People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schuschnigg, Stephan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Simulation of the Melting Region in Additive Manufacturing Material Extrusion Dies for Highly Filled Feedstocks
- 2024Comparative analysis of binder systems in copper feedstocks for metal extrusion additive manufacturing and metal injection mouldingcitations
- 2024Production of Permanent Magnets from Recycled NdFeB Powder with Powder Extrusion Mouldingcitations
- 2024Binder System Composition on the Rheological and Magnetic Properties of Nd-Fe-B Feedstocks for Metal Injection Moldingcitations
- 2024Rapid tooling for rubber extrusion molding by digital light processing 3D printing with dual curable vitrimerscitations
- 2024Additive Manufacturing Material Extrusion @ Institute of Polymer Processing
- 2023Susmagpro
- 2023Debinding And Sintering Strategies For Fused Filament Fabrication Of Aluminium Alloyscitations
- 2023Effects of Different Polypropylene (PP)-Backbones in Aluminium Feedstock for Fused Filament Fabrication (FFF)citations
- 2023Validation Of Alternative Binders for Pellet Extrusion 3D Printing Of 316L Steels
- 2022Research Progress on Low-Pressure Powder Injection Moldingcitations
- 2022In-situ alignment of 3D printed anisotropic hard magnetscitations
- 2021Thermal conductive, electrically insulating polymer compounds using material extrusion additive manufacturing for electronic parts
- 2021Powder content in powder extrusion moulding of tool steelcitations
- 2020Additive Fertigung metallischer und keramischer Bauteile
- 2019Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet componentscitations
- 2019Filament-extrusion 3D printing of hardmetal and cermet parts
- 2018Feedstocks for the Shaping-Debinding-Sintering Process of Multi Material Components
- 2018Adhesion of standard filament materials to different build platforms in material extrusion additive manufacturing
- 2018Material Extrusion Additive Manufacturing for Photocatalytic Applications
- 2018Highly-filled Polymers for Fused Filament Fabrication
- 2018Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymerscitations
- 2018Polypropylene Filled With Glass Spheres in Extrusion‐Based Additive Manufacturingcitations
- 2017Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabricationcitations
- 2016Dissipative particle dynamics simulations of orientation of layered silicate particles embedded in polymer melts under shear flowscitations
- 2016Structure of Polypropylene Macromolecules in the Vicinity of Fe2O3 Surface
- 2016Effect of Particle Size on the Properties of Highly-Filled Polymers for Fused Filament Fabrication
- 2016Bonding Forces in Fused Filament Fabrication
- 2016Coupled Orientation and Stretching of Chains in Mesoscale Models of Polydisperse Linear Polymers in Startup of Steady Shear Flow Simulationscitations
- 2016Haftungsvorhersage und Haftungsverbesserung im Fused Filament Fabrication (FFF) Prozess
- 2016Special Materials and Technologies for Fused Filament Fabrication
- 2016Properties for PIM Feedstocks Used in Fused Filament Fabrication
- 2016Optimization of twin screw extrusion using CFD for polymer/nanoclay composites
- 2015Optimization of Twin Screw Extrusion using CFD for Polymer/Nanoclay Composites
Places of action
Organizations | Location | People |
---|
document
Research Progress on Low-Pressure Powder Injection Molding
Abstract
<jats:p>Powder injection molding (PIM) is a well-known technique to manufacture net-shaped, complicated, macro or micro parts employing a wide range of materials and alloys. Depending on the pressure applied to inject the feedstock, this process can be separated into low-pressure (LPIM) and high-pressure (HPIM) injection molding. Although the LPIM and HPIM processes are theoretically similar, all steps have substantial differences, particularly feedstock preparation, injection, and debinding. After decades of focusing on HPIM, low-viscosity feedstocks with improved flowability have recently been produced utilizing low-molecular-weight polymers for LPIM. It has been proven that LPIM can be used for making parts in low quantities or mass production. Compared to HPIM, which could only be used for the mass production of metallic and ceramic components, LPIM can give an outstanding opportunity to cover applications in low or large batch production rates. Due to the use of low-cost equipment, LPIM also provides several economic benefits. However, establishing an optimal binder system for all powders that should be injected at extremely low pressures (below 1 MPa) is challenging. Therefore, various defects may occur throughout the mixing, injection, debinding, and sintering stages. Since all steps in the process are interrelated, it is important to have a general picture of the whole process which needs a scientific overview. This paper reviews the potential of LPIM and the characteristics of all steps. A complete academic and research background survey on the applications, challenges, and prospects has been indicated. It can be concluded that although many challenges of LPIM have been solved, it could be a proper solution to use this process and materials in developing new applications for technologies such as additive manufacturing and processing of sensitive alloys.</jats:p>