People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nosewicz, Szymon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Microstructural Evolution of Ni-SiC Composites Manufactured by Spark Plasma Sinteringcitations
- 2022Numerical Simulation of Thermal Conductivity and Thermal Stress in Lightweight Refractory Concrete with Cenospherescitations
- 2020Size Effects of Hardness and Strain Rate Sensitivity in Amorphous Silicon Measured by Nanoindentationcitations
- 2020Influence of overstoichiometric boron and titanium addition on the properties of RF magnetron sputtered tungsten boridescitations
- 2019Experimental and numerical studies of micro- and macromechanical properties of modified copper–silicon carbide compositescitations
- 2019Analysis of the micromechanical properties of copper-silicon carbide composites using nanoindentation measurementscitations
- 2019Effect of spark plasma sintering and high-pressure torsion on the microstructural and mechanical properties of a Cu–SiC compositecitations
- 2017Effect of metallic coating on the properties of copper-silicon carbide compositescitations
- 2017Investigations of interface properties in copper-silicon carbide compositescitations
- 2017Microstructure and Thermal Properties of Cu-SiC Composite Materials Depending on the Sintering Techniquecitations
Places of action
Organizations | Location | People |
---|
article
Numerical Simulation of Thermal Conductivity and Thermal Stress in Lightweight Refractory Concrete with Cenospheres
Abstract
<jats:p>The main objective of this paper was to investigate the heat transfer of modified lightweight refractory concrete at the microscopic scale. In this work, such material was treated as a porous composite based on the compound of calcium aluminate cement and aluminosilicate cenospheres. The presence of air inclusions within the cenospheres was an essential factor in the reduction in thermal performance. Due to the intricacy of the subject investigated, our research employed numerical, theoretical, and experimental approaches. Scanning electron microscopy (SEM) imaging was performed to study the composite microstructure with a special focus on geometry, dimensions, and the distribution of cenospheres. Based on the experimental analysis, simplified geometrical models were generated to reproduce the main features of the composite matrix and cenospheres. A finite element framework was used to determine the effective thermal conductivity of such domains as well as the thermal stresses generated in the sample during the heat flow. A considerable difference in thermal properties was revealed by comparing the simulation results of the pure composite matrix and the samples, indicating a varying arrangement of cenosphere particles. The numerical results were complemented by a theoretical study that applied analytical models derived from the two-phase mixture theory—parallel and Landauer. A satisfactory agreement between numerical and theoretical results was achieved; however, the extension of both presented approaches is required.</jats:p>