People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vigneswaran, Saravanamuthu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Fabrication of Naturally Derived Chitosan and Ilmenite Sand-Based TiO2/Fe2O3/Fe-N-Doped Graphitic Carbon Composite for Photocatalytic Degradation of Methylene Blue under Sunlightcitations
- 2022Fabrication of r-GO/GO/α-Fe2O3/Fe2TiO5 Nanocomposite Using Natural Ilmenite and Graphite for Efficient Photocatalysis in Visible Lightcitations
- 2019Removal of various contaminants from water by renewable lignocellulose-derived biosorbentscitations
Places of action
Organizations | Location | People |
---|
article
Fabrication of r-GO/GO/α-Fe2O3/Fe2TiO5 Nanocomposite Using Natural Ilmenite and Graphite for Efficient Photocatalysis in Visible Light
Abstract
<jats:p>Hematite (α-Fe2O3) and pseudobrookite (Fe2TiO5) suffer from poor charge transport and a high recombination effect under visible light irradiation. This study investigates the design and production of a 2D graphene-like r-GO/GO coupled α-Fe2O3/Fe2TiO5 heterojunction composite with better charge separation. It uses a simple sonochemical and hydrothermal approach followed by L-ascorbic acid chemical reduction pathway. The advantageous band offset of the α-Fe2O3/Fe2TiO5 (TF) nanocomposite between α-Fe2O3 and Fe2TiO5 forms a Type-II heterojunction at the Fe2O3/Fe2TiO5 interface, which efficiently promotes electron-hole separation. Importantly, very corrosive acid leachate resulting from the hydrochloric acid leaching of ilmenite sand, was successfully exploited to fabricate α-Fe2O3/Fe2TiO5 heterojunction. In this paper, a straightforward synthesis strategy was employed to create 2D graphene-like reduced graphene oxide (r-GO) from Ceylon graphite. The two-step process comprises oxidation of graphite to graphene oxide (GO) using the improved Hummer’s method, followed by controlled reduction of GO to r-GO using L-ascorbic acid. Before the reduction of GO to the r-GO, the surface of TF heterojunction was coupled with GO and was allowed for the controlled L-ascorbic acid reduction to yield r-GO/GO/α-Fe2O3/Fe2TiO5 nanocomposite. Under visible light illumination, the photocatalytic performance of the 30% GO/TF loaded composite material greatly improved (1240 Wcm−2). Field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) examined the morphological characteristics of fabricated composites. X-ray photoelectron spectroscopy (XPS), Raman, X-ray diffraction (XRD), X-ray fluorescence (XRF), and diffuse reflectance spectroscopy (DRS) served to analyze the structural features of the produced composites.</jats:p>