Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gamanov, Štepán

  • Google
  • 1
  • 7
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022The Optimization of Mechanical Alloying Conditions of Powder for the Preparation of a Fe-10Al-4Cr-4Y2O3 ODS Nanocomposite5citations

Places of action

Chart of shared publication
Jarý, Milan
1 / 2 shared
Bártková, Denisa
1 / 1 shared
Svoboda, Jiří
1 / 6 shared
Luptáková, Natália
1 / 4 shared
Holzer, Jakub
1 / 4 shared
Mašek, Bohuslav
1 / 4 shared
Bořil, Petr
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Jarý, Milan
  • Bártková, Denisa
  • Svoboda, Jiří
  • Luptáková, Natália
  • Holzer, Jakub
  • Mašek, Bohuslav
  • Bořil, Petr
OrganizationsLocationPeople

article

The Optimization of Mechanical Alloying Conditions of Powder for the Preparation of a Fe-10Al-4Cr-4Y2O3 ODS Nanocomposite

  • Jarý, Milan
  • Bártková, Denisa
  • Svoboda, Jiří
  • Luptáková, Natália
  • Holzer, Jakub
  • Gamanov, Štepán
  • Mašek, Bohuslav
  • Bořil, Petr
Abstract

<jats:p>Mechanical alloying (MA) of powders represents the first processing step in the production of oxide dispersion-strengthened (ODS) alloys. MA is a time and energy-consuming process also in the production of Fe-10Al-4Cr-4Y2O3 creep and oxidation-resistant ODS nanocomposite, denoted as the FeAlOY, and it deserves to be optimized. MA is performed at two different temperatures at different times. The powder after MA, as well as the microstructure and high-temperature strength of the final FeAlOY, are characterized and the optimal MA conditions are evaluated. The obtained results show that the size distribution of the powder particles, as well as the dissolution and homogenization of the Y2O3, becomes saturated quite soon, while the homogenization of the metallic components, such as Al and Cr, takes significantly more time. The high-temperature tensile tests and grain microstructures of the secondary recrystallized FeAlOY, however, indicate that the homogenization of the metallic components during MA does not influence the quality of the FeAlOY, as the matrix of the FeAlOY is sufficiently homogenized during recrystallization. Thus, the conditions of MA correspond to sufficient dissolution and homogenization of Y2O3 and can be considered the optimal ones.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • grain
  • strength
  • recrystallization
  • homogenization
  • creep