Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mutt, Nagabhushana Bhangi

  • Google
  • 1
  • 6
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Effective Attenuation of Electromagnetic Waves by Synergetic Effect of α-Fe2O3 and MWCNT/Graphene in LDPE-Based Composites for EMI Applications22citations

Places of action

Chart of shared publication
Channegowda, Manjunatha
1 / 5 shared
Krishna, R. Hari
1 / 1 shared
Kumar, S. Girish
1 / 1 shared
Praveen, M.
1 / 1 shared
Gm, Mamatha
1 / 1 shared
Sadananda, Karthikeya Gulur
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Channegowda, Manjunatha
  • Krishna, R. Hari
  • Kumar, S. Girish
  • Praveen, M.
  • Gm, Mamatha
  • Sadananda, Karthikeya Gulur
OrganizationsLocationPeople

article

Effective Attenuation of Electromagnetic Waves by Synergetic Effect of α-Fe2O3 and MWCNT/Graphene in LDPE-Based Composites for EMI Applications

  • Channegowda, Manjunatha
  • Krishna, R. Hari
  • Kumar, S. Girish
  • Praveen, M.
  • Gm, Mamatha
  • Mutt, Nagabhushana Bhangi
  • Sadananda, Karthikeya Gulur
Abstract

<jats:p>In this study, a polymer nanocomposite is synthesized using magnetic and conducting fillers for enhanced electromagnetic interference (EMI) shielding. Alfa-ferrite (α-Fe2O3) nanoparticles with minimal multiwalled carbon nanotube (MWCNT) as low as 5 weight % in combination with variable concentrations of graphene nanoplatelets (GNP) are used as fillers in low-density polyethylene (LDPE) polymer matrix. Nanofillers and the polymer matrix are characterized by various techniques such as XRD, SEM, color mapping, EDAX, TGA, etc. The EMI shielding efficiency of the LDPE-based nanocomposites is tested using Vector Network Analyzer (VNA). The results showed that composite with LDPE:MWCNT:GNP:α-FO-50:5:40:5 displayed enhanced EMI shielding (in X-band (8.2–12.4 GHz) compared to other concentrations studied. This is due to the superior ohmic, dielectric, and magnetic losses at this particular composition and to the synergism amongst the filler. An attenuation of 99.99% was achieved for 5% α-Fe2O3. The mechanistic aspects of the shielding are discussed using permittivity, conductivity, and attenuation.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • density
  • impedance spectroscopy
  • polymer
  • Carbon
  • scanning electron microscopy
  • x-ray diffraction
  • nanotube
  • thermogravimetry
  • Energy-dispersive X-ray spectroscopy