Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mikusek, Dominik

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Refinement of the Magnesium–Aluminium Alloy Microstructure with Zirconiumcitations

Places of action

Chart of shared publication
Januszewicz, Bartlomiej
1 / 3 shared
Pacyniak, Tadeusz
1 / 5 shared
Rapiejko, Cezary
1 / 6 shared
Kubiak, Krzysztof J.
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Januszewicz, Bartlomiej
  • Pacyniak, Tadeusz
  • Rapiejko, Cezary
  • Kubiak, Krzysztof J.
OrganizationsLocationPeople

article

Refinement of the Magnesium–Aluminium Alloy Microstructure with Zirconium

  • Mikusek, Dominik
  • Januszewicz, Bartlomiej
  • Pacyniak, Tadeusz
  • Rapiejko, Cezary
  • Kubiak, Krzysztof J.
Abstract

The magnesium–aluminium alloy AZ91 was inoculated with zirconium to refine the microstructure. Six different concentrations of zirconium content were tested, ranging from 0.1 to 0.6 wt %, and compared to the baseline AZ91 alloy without modification. Melted metal was poured into a preheated ceramic mould and the temperature was measured and recorded during the solidification. The derivative and thermal analysis (DTA) was performed to compare the crystallisation dynamics. Formed microstructure was analysed using an optical microscope, scanning electron microscopy (SEM-EDX) and energy dispersive X-ray spectrometry (XRD). The chemical composition was measured using an arc spectrometer. The time of solidification was shortened for the samples with a concentration of zirconium 0.3 wt % and the microstructure was refined. The level of grain refinement remained below 10% and the grain shape was changed to more spherical shapes. Both the primary magnesium and eutectic phases were modified. However, at a low concentration of zirconium (0.1 and 0.2 wt %), the primary grain size was increased. Therefore, the optimal zirconium concentration was 0.3 wt %. Larger concentrations (0.4 to 0.6 wt %) did not provide any additional benefit. Theoretical analysis showed that some Al3Zr intermetallic phases can form, which was confirmed on the derivate curve of the thermal analysis, and SEM-EDS and XRD analyses

Topics
  • grain
  • grain size
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • Magnesium
  • Magnesium
  • aluminium
  • zirconium
  • aluminium alloy
  • chemical composition
  • Energy-dispersive X-ray spectroscopy
  • ceramic
  • intermetallic
  • spectrometry
  • solidification
  • differential thermal analysis