People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dolzhenko, Anastasiia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Thermo-Mechanical Processing as Method Decreasing Delta-Ferrite and Improving the Impact Toughness of the Novel 12% Cr Steels with Low N and High B Contents
Abstract
<jats:p>The universal thermo-mechanical processing including the interim long-term annealing together with forging for three 12% Cr martensitic steels with different alloying. This thermo-mechanical processing remarkably increases the impact toughness of these steels in wide temperature ranges and reduces the ductile-brittle transition temperature by 10–20 K. There is a 25 °C impact toughness of all 12% Cr steels subjected to the thermo-mechanical processing exceeds 60 J cm−2. Such an increment in impact toughness is accompanied with the significant changes in the structures of all 12% Cr steels with different alloying. The common feature for all 12% Cr steels subjected to the thermo-mechanical processing is found to be a noticeable decrease in delta-ferrite amount. In the steels containing Ta, the decrease in the mean size of prior austenite grains by 20–26% was revealed. For the 12% Cr steels with ultra-low N content, the thermo-mechanical processing provides the changes in the dispersion of M23C6 carbides and MX carbonitrides.</jats:p>