Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alpuim, Pedro

  • Google
  • 5
  • 28
  • 22

International Iberian Nanotechnology Laboratory

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024PbSe Quantum Dot Superlattice Thin Films for Thermoelectric Applications4citations
  • 2024PbSe Quantum Dot Superlattice Thin Films for Thermoelectric Applications4citations
  • 2023Large-scale colloidal synthesis of chalcogenides for thermoelectric applications2citations
  • 2022High Seebeck coefficient from screen-printed colloidal PbSe nanocrystals thin film6citations
  • 2022High Seebeck Coefficient from Screen-Printed Colloidal PbSe Nanocrystals Thin Film6citations

Places of action

Chart of shared publication
Santos Claro, Marcel
1 / 2 shared
Pyrlin, Sergey
2 / 8 shared
Mori, Takao
2 / 39 shared
Vieira, E. M. F.
1 / 9 shared
Modin, Evgeny
2 / 4 shared
Kolenko, Yury V.
4 / 19 shared
Farsangi, Siavash Mohammadalizadeh
1 / 1 shared
Freitas, Cátia
2 / 2 shared
Lebedev, Oleg
1 / 21 shared
Sousa, Viviana
5 / 7 shared
Marques, Luis
2 / 4 shared
Kolenko, Yury
1 / 1 shared
Claro, Marcel
1 / 2 shared
Alizadeh, Siavash
1 / 1 shared
Kovnir, Kirill
3 / 13 shared
Goto, Masahiro
1 / 1 shared
Vieira, Eliana
3 / 3 shared
Lebedev, Oleg, I.
1 / 6 shared
Lenoir, Bertrand
1 / 103 shared
Coelho, Rodrigo
1 / 4 shared
Sarkar, Arka
1 / 2 shared
Gonçalves, António P.
1 / 1 shared
Lebedev, Oleg I.
3 / 28 shared
Candolfi, Christophe
1 / 86 shared
Correia, José
1 / 7 shared
Savelli, Guillaume
2 / 4 shared
Correia, Jose
1 / 2 shared
Vieira, Eliana M. F.
1 / 1 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Santos Claro, Marcel
  • Pyrlin, Sergey
  • Mori, Takao
  • Vieira, E. M. F.
  • Modin, Evgeny
  • Kolenko, Yury V.
  • Farsangi, Siavash Mohammadalizadeh
  • Freitas, Cátia
  • Lebedev, Oleg
  • Sousa, Viviana
  • Marques, Luis
  • Kolenko, Yury
  • Claro, Marcel
  • Alizadeh, Siavash
  • Kovnir, Kirill
  • Goto, Masahiro
  • Vieira, Eliana
  • Lebedev, Oleg, I.
  • Lenoir, Bertrand
  • Coelho, Rodrigo
  • Sarkar, Arka
  • Gonçalves, António P.
  • Lebedev, Oleg I.
  • Candolfi, Christophe
  • Correia, José
  • Savelli, Guillaume
  • Correia, Jose
  • Vieira, Eliana M. F.
OrganizationsLocationPeople

article

High Seebeck Coefficient from Screen-Printed Colloidal PbSe Nanocrystals Thin Film

  • Alpuim, Pedro
  • Correia, Jose
  • Kolenko, Yury V.
  • Lebedev, Oleg I.
  • Vieira, Eliana M. F.
  • Savelli, Guillaume
  • Sousa, Viviana
Abstract

<jats:p>Thin-film thermoelectrics (TEs) with a thickness of a few microns present an attractive opportunity to power the internet of things (IoT). Here, we propose screen printing as an industry-relevant technology to fabricate TE thin films from colloidal PbSe quantum dots (QDs). Monodisperse 13 nm-sized PbSe QDs with spherical morphology were synthesized through a straightforward heating-up method. The cubic-phase PbSe QDs with homogeneous chemical composition allowed the formulation of a novel ink to fabricate 2 μm-thick thin films through robust screen printing followed by rapid annealing. A maximum Seebeck coefficient of 561 μV K−1 was obtained at 143 °C and the highest electrical conductivity of 123 S m−1 was reached at 197 °C. Power factor calculations resulted in a maximum value of 2.47 × 10−5 W m−1 K−2 at 143 °C. To the best of our knowledge, the observed Seebeck coefficient value is the highest reported for TE thin films fabricated by screen printing. Thus, this study highlights that increased Seebeck coefficients can be obtained by using QD building blocks owing to quantum confinement.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • thin film
  • chemical composition
  • annealing
  • electrical conductivity
  • quantum dot