People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Plyushch, Artyom
Vilnius University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Effect of Particle Size on the Origin of Electromechanical Response in BaTiO 3 /PDMS Nanogeneratorscitations
- 2023Multilayered Composites with Carbon Nanotubes for Electromagnetic Shielding Applicationcitations
- 2022Electrical Resistivity and Microwave Properties of Carbon Fiber Felt Compositescitations
- 2022Phosphate bonded CoFe<sub>2</sub>O<sub>4</sub>–BaTiO<sub>3</sub> layered structures: Dielectric relaxations and magnetoelectric couplingcitations
- 20210.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Phosphate Composites: Dielectric and Ferroelectric Propertiescitations
- 2020Dielectric Relaxation in the Hybrid Epoxy/MWCNT/MnFe2O4 Compositescitations
- 2020The Phosphate-Based Composite Materials Filled with Nano-Sized BaTiO3 and Fe3O4: Toward the Unfired Multiferroic Materialscitations
- 2019Synergy Effects in Electromagnetic Properties of Phosphate Ceramics with Silicon Carbide Whiskers and Carbon Nanotubescitations
Places of action
Organizations | Location | People |
---|
article
Electrical Resistivity and Microwave Properties of Carbon Fiber Felt Composites
Abstract
International audience ; We present studies on the microwave properties, electrical resistivity, and low-frequency (10 Hz-20 kHz) noise characteristics in the temperature range of 78 K to 380 K of composite materials made from bisphenol A-based epoxy resin and carbon fiber felts. Two types of carbon fibers were used, derived from polyacrylonitrile or regenerated cellulose. We show that these structures are suitable for electromagnetic shielding applications, especially in the direction parallel to the carbon fibers. The low-frequency voltage fluctuations observed in these materials are of the 1/f α , and the noise intensity is proportional to the square of the voltage. The characteristics of the investigated materials show an instability in the temperature range from 307 K to 332 K. This effect is followed by an increase in resistivity and noise intensity, but it does not change the character of the noise, and this instability vanishes after a few repeated heating and cooling cycles.