People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lundström, Mari
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (41/41 displayed)
- 2024Graphite recovery from waste Li-ion battery black mass for direct re-usecitations
- 2023Recent developments of electrodeposition-redox replacement in metal recovery and functional materials: A reviewcitations
- 2023Assessment of environmental sustainability of nickel required for mobility transitioncitations
- 2023Assessment of environmental sustainability of nickel required for mobility transitioncitations
- 2023Flowsheet design and environmental impacts of cobalt co-product recovery from complex Au-Co orescitations
- 2023Emeraldine Salt-Nanocarbon Composites as a Material for Copper Recovery from Industrial Wastewaters
- 2022Carbon Nanotube-Based Thermoelectric Modules Enhanced by ZnO Nanowirescitations
- 2022Electrochemical Growth of Ag/Zn Alloys from Zinc Process Solutions and Their Dealloying Behaviorcitations
- 2022A New Hydrometallurgical Process for Metal Extraction from Electric Arc Furnace Dust Using Ionic Liquidscitations
- 2022Green and Controllable Preparation of Cu/Zn Alloys Using Combined Electrodeposition and Redox Replacementcitations
- 2022Targeted surface modification of Cu/Zn/Ag coatings and Ag/Cu particles based on sacrificial element selection by electrodeposition and redox replacementcitations
- 2021Cyclic voltammetry and potentiodynamic polarization studies of chalcopyrite concentrate in glycine mediumcitations
- 2021Performance-Based Selection of the Cathode Material for the Electrodeposition-Redox Replacement Process of Gold Recovery from Chloride Solutionscitations
- 2021Copper cathode contamination by nickel in copper electrorefiningcitations
- 2021Biopolymeric Anticorrosion Coatings from Cellulose Nanofibrils and Colloidal Lignin Particlescitations
- 2021Copper recovery from industrial wastewater - Synergistic electrodeposition onto nanocarbon materialscitations
- 2020Mechanism of selective gold extraction from multi-metal chloride solutions by electrodeposition-redox replacementcitations
- 2020Mechanism of selective gold extraction from multi-metal chloride solutions by electrodeposition-redox replacementcitations
- 2020A sustainable two-layer lignin-anodized composite coating for the corrosion protection of high-strength low-alloy steelcitations
- 2020Transformation of industrial wastewater into copper–nickel nanowire composites : straightforward recycling of heavy metals to obtain products of high added valuecitations
- 2020Investigation of the anticorrosion performance of lignin coatings after crosslinking with triethyl phosphate and their adhesion to a polyurethane topcoat
- 2019Energy efficient copper electrowinning and direct deposition on carbon nanotube film from industrial wastewaterscitations
- 2019Sulfation Roasting Mechanism for Spent Lithium-Ion Battery Metal Oxides Under SO2-O2-Ar Atmospherecitations
- 2019Modelling of silver anode dissolution and the effect of gold as impurity under simulated industrial silver electrorefining conditionscitations
- 2018A Sustainable Methodology for Recycling Electric Arc Furnace Dustcitations
- 2018Structural distinction due to deposition method in ultrathin films of cellulose nanofibrescitations
- 2018From waste to valuable resource: Lignin as a sustainable anti-corrosion coatingcitations
- 2018A direct synthesis of platinum/nickel co-catalysts on titanium dioxide nanotube surface from hydrometallurgical-type process streamscitations
- 2018Corrosion behaviour of cast and deformed copper-carbon nanotube composite wires in chloride mediacitations
- 2018Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid systemcitations
- 2018Kinetic study and modelling of silver dissolution in synthetic industrial silver electrolyte as a function of electrolyte composition and temperaturecitations
- 2018Carbon Nanotube Fiber Pretreatments for Electrodeposition of Coppercitations
- 2018Jarogain Process:A Hydrometallurgical Option to Recover Metal Values from RLE Zinc Residue and Steel Dust
- 2018Hydrometallurgical approach for leaching of metals from copper rich side stream originating from base metal productioncitations
- 2018Platinum recovery from Industrial Process Solutions by Electrodepo-sition-Redox Replacement
- 2017Designing gold extraction processes:Performance study of a case-based reasoning systemcitations
- 2017Designing gold extraction processes: performance study of a case-based reasoning systemcitations
- 2017Leaching of Sb from TROF furnace Doré slagcitations
- 2017Simulation of electrochemical processes during oxygen evolution on Pb-MnO2 composite electrodescitations
- 2017Primary Copper Smelter and Refinery as a Recycling Plant—A System Integrated Approach to Estimate Secondary Raw Material Tolerancecitations
- 2016Carbon nanotube-copper composites by electrodeposition on carbon nanotube fiberscitations
Places of action
Organizations | Location | People |
---|
article
A New Hydrometallurgical Process for Metal Extraction from Electric Arc Furnace Dust Using Ionic Liquids
Abstract
This research proposes a new hydrometallurgical method for Zn, In, and Ga extraction, along with Fe as a common impurity, from electric arc furnace dust (EAFD), using ionic liquids. EAFD is a metal-containing waste fraction generated in significant amounts during the process of steelmaking from scrap material in an electric arc furnace. With valuable metal recovery as the main goal, two ionic liquids, [Bmim+HSO<sub>4</sub><sup>-</sup>] and [Bmim+Cl<sup>-</sup>], were studied in conjunction with<br/>three oxidants: Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, KMnO<sub>4</sub>, and H<sub>2</sub>O<sub>2</sub>. The results indicated that the best combination was [Bmim+HSO<sub>4</sub><sup>-</sup>] with [Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>]. An experimental series subsequently demonstrated that the combination of 30% v/v [Bmim+HSO<sub>4</sub><sup>-</sup>], 1 g of [Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>], S/L ratio = 1/20, a 240 min leaching time, and a temperature of 85 C was optimal, resulting in maximum extractions of 92.7% Zn, 97.4% In, and 17.03% Ga. In addition, 80.2% of the impurity metal Fe was dissolved. The dissolution kinetics of these four elements over a temperature range of 55–85ºC was found to be diffusion controlled. The remaining phases present in the leached residue were low amounts of ZnO, Fe<sub>3</sub>O<sub>4</sub>, ZnFe<sub>2</sub>O<sub>4</sub>, and traces of Ca(OH)<sub>2</sub> and MnO<sub>2</sub>, and additional sharp peaks indicative of PbSO<sub>4</sub> and CaSO<sub>4</sub> appeared within the XRD pattern. The intensity of the peaks related to ZnO and Fe<sub>3</sub>O<sub>4</sub> were observed to have decreased considerably during leaching, whereas some of the refractory ZnFe<sub>2</sub>O<sub>4</sub> phase remained. SEM-EDS analysis revealed that the initial EAFD morphology was composed of spherical-shaped fine-grained particle agglomerates, whereas the leached residue was dominated by calcium sulphate (Ca(SO<sub>4</sub>))-rich needle-shaped crystals. The results clearly demonstrate that [Bmim+HSO<sub>4</sub><sup>-</sup>] is able to extract the target metals due to its acidic properties.