Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Soriano, Lourdes

  • Google
  • 14
  • 33
  • 346

Universitat Politècnica de València

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2024Reusing Ceramic Waste as a Precursor in Alkali-Activated Cements: A Review4citations
  • 2024Eco-Pozzolans as Raw Material for Sustainable Construction Industry: Comparative Evaluation of Reactivity Through Direct and Indirect Methodscitations
  • 2023Reusing Ceramic Waste as a Precursor in Alkali-Activated Cements: A Review4citations
  • 2023Reusing Ceramic Waste as a Precursor in Alkali-Activated Cements: A Review4citations
  • 2023Evaluation of Thermochemical Treatments for Rice Husk Ash Valorisation as a Source of Silica in Preparing Geopolymers4citations
  • 2022Impedance Spectroscopy as a Methodology to Evaluate the Reactivity of Metakaolin Based Geopolymers5citations
  • 2022Potential use of ceramic sanitary ware waste as pozzolanic material ; Uso potencial de residuos de cerámica sanitaria como material puzolánico27citations
  • 2021Reutilisation of hazardous spent fluorescent lamps glass waste as supplementary cementitious material19citations
  • 2018The Compressive Strength and Microstructure of Alkali-Activated Binary Cements Developed by Combining Ceramic Sanitaryware with Fly Ash or Blast Furnace Slag8citations
  • 2018Compressive strength and microstructure of alkali-activated mortars with high ceramic waste content67citations
  • 2018Influence of calcium additions on the compressive strength and microstructure of alkali-activated ceramic sanitary-ware30citations
  • 2018Compressive strength and microstructure of alkali-activated blast furnace slag/sewage sludge ash (GGBS/SSA) blends cured at room temperature38citations
  • 2018Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders13citations
  • 2014Alkaline activation of ceramic waste materials123citations

Places of action

Chart of shared publication
Borrachero, Mª Victoria
12 / 14 shared
Monzo Balbuena, Jose Maria
3 / 4 shared
Reig, Lucía
10 / 14 shared
Pitarch-Roig, Angel-Miguel
3 / 5 shared
Payá, Jordi
13 / 15 shared
Mitsuuchi Tashima, Mauro
1 / 7 shared
Duran, Afonso José Felício Peres
1 / 1 shared
Tashima, Mauro Mitsuuchi
1 / 2 shared
Borrachero, María Victoria
1 / 1 shared
Rossignolo, João Adriano
1 / 1 shared
Lyra, Gabriela Pitolli
1 / 1 shared
Borrachero Rosado, María Victoria
1 / 16 shared
Monzó, José M.
1 / 1 shared
Tashima, Mauro M.
4 / 5 shared
Pitarch Roig, Ángel Miguel
1 / 3 shared
Reig Cerdá, Lucía
1 / 6 shared
Bouzón, Noelia
1 / 1 shared
Font, Alba
1 / 1 shared
Istuque, Danilo Bordan
1 / 1 shared
Akasaki, Jorge Luis
1 / 5 shared
Sanches, Alex
1 / 2 shared
Malmonge, José Antônio
1 / 1 shared
Bortoletto, Marcelo
1 / 1 shared
Monzó, José María
4 / 4 shared
Gallardo Izquierdo, Antonio
1 / 1 shared
Rochina Salvador, Sergio
1 / 1 shared
Cosa, Juan
2 / 2 shared
Sanz, M. A.
1 / 1 shared
Monzó, J.
2 / 3 shared
Tashima, M. M.
3 / 4 shared
Akasaki, Jorge Luís
1 / 1 shared
Moraes, J. C. B.
1 / 2 shared
Santini Jr., M. A.
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2018
2014

Co-Authors (by relevance)

  • Borrachero, Mª Victoria
  • Monzo Balbuena, Jose Maria
  • Reig, Lucía
  • Pitarch-Roig, Angel-Miguel
  • Payá, Jordi
  • Mitsuuchi Tashima, Mauro
  • Duran, Afonso José Felício Peres
  • Tashima, Mauro Mitsuuchi
  • Borrachero, María Victoria
  • Rossignolo, João Adriano
  • Lyra, Gabriela Pitolli
  • Borrachero Rosado, María Victoria
  • Monzó, José M.
  • Tashima, Mauro M.
  • Pitarch Roig, Ángel Miguel
  • Reig Cerdá, Lucía
  • Bouzón, Noelia
  • Font, Alba
  • Istuque, Danilo Bordan
  • Akasaki, Jorge Luis
  • Sanches, Alex
  • Malmonge, José Antônio
  • Bortoletto, Marcelo
  • Monzó, José María
  • Gallardo Izquierdo, Antonio
  • Rochina Salvador, Sergio
  • Cosa, Juan
  • Sanz, M. A.
  • Monzó, J.
  • Tashima, M. M.
  • Akasaki, Jorge Luís
  • Moraes, J. C. B.
  • Santini Jr., M. A.
OrganizationsLocationPeople

article

Impedance Spectroscopy as a Methodology to Evaluate the Reactivity of Metakaolin Based Geopolymers

  • Istuque, Danilo Bordan
  • Tashima, Mauro M.
  • Borrachero, Mª Victoria
  • Akasaki, Jorge Luis
  • Sanches, Alex
  • Payá, Jordi
  • Malmonge, José Antônio
  • Soriano, Lourdes
  • Bortoletto, Marcelo
Abstract

<jats:p>The aim of this study was to use the electrical impedance spectroscopy technique (IS) to carry out a systematic study on the mechanism of metakaolin geopolymerization for up to 7 curing days. The study was developed on two batches of metakaolin (MK), and their reaction processes were compared. Interpretative fundamental elements were developed based on the effective electrical conductivity curves regarding the metakaolin geopolymerization. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were previously carried out and used to interpret and validate the electrical behavior of the fresh and hardened MK-based geopolymer pastes. The results highlighted the sensibility of the impedance technique to the identification and description of the MK geopolymerization process, as well as the changes resulting from even slight variations in the metakaolin composition. Furthermore, this indicated that the geopolymerization process in highly alkaline solutions could be divided into seven stages, including the processes of dissolution, nucleation, precipitation and formation of the gel and, eventually, the retraction/microcracks constitution. Late dissolution processes could be observed during the more advanced stages and were attributed to particles not being fully hydrated.</jats:p>

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • x-ray diffraction
  • precipitation
  • Fourier transform infrared spectroscopy
  • electrical conductivity
  • curing