Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baki, Vahiddin Alperen

  • Google
  • 3
  • 7
  • 108

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Improving the pozzolanic reactivity of clay, marl and obsidian through mechanochemical or thermal activation13citations
  • 2022The impact of mechanochemical activation on the physicochemical properties and pozzolanic reactivity of kaolinite, muscovite and montmorillonite79citations
  • 2022Biomass Bottom Ash as Supplementary Cementitious Material: The Effect of Mechanochemical Pre-Treatment and Mineral Carbonation16citations

Places of action

Chart of shared publication
Calabria-Holley, Juliana
2 / 21 shared
Heath, Andrew
2 / 27 shared
Terzi, Cemalettin
1 / 1 shared
Ke, Xinyuan
3 / 14 shared
Feng, Yanjin
1 / 1 shared
Valderrabano, Maria
1 / 1 shared
Skevi, Lorena
1 / 5 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Calabria-Holley, Juliana
  • Heath, Andrew
  • Terzi, Cemalettin
  • Ke, Xinyuan
  • Feng, Yanjin
  • Valderrabano, Maria
  • Skevi, Lorena
OrganizationsLocationPeople

article

Biomass Bottom Ash as Supplementary Cementitious Material: The Effect of Mechanochemical Pre-Treatment and Mineral Carbonation

  • Feng, Yanjin
  • Valderrabano, Maria
  • Baki, Vahiddin Alperen
  • Skevi, Lorena
  • Ke, Xinyuan
Abstract

The need to mitigate the CO2 emissions deriving from the cement industry becomes imperative as the climate crisis advances. An effective strategy to achieve this is increasing the replacement level of cement clinkers by waste-derived supplementary cementitious materials (SCMs). In this study, the use of mechanochemically activated biomass ash for high-volume (up to 40%) substitution of cement is investigated. The effect of mineral carbonation treatment on the performance of the mechanochemically treated biomass ash as SCM was also examined. The results showed that the mechanochemically treated biomass ash was the most effective SCM, with the respective samples at 40% cement replacement reaching 63% of the strength at 28 days as compared to samples with 100% Portland cement, while only 17% of the strength was achieved in samples with 40% untreated biomass ash. As suggested by the isothermal calorimetry, XRD, FTIR, and TG analysis, the mechanochemical treatment enhanced the reactivity and the filler effect of the biomass ash, leading to improved mechanical performances of these mortars compared to those containing untreated biomass ash. Mineral carbonation reduced the reactivity of the mechanochemically treated biomass ash but still led to better strength performances in comparison to the untreated biomass ash.

Topics
  • impedance spectroscopy
  • mineral
  • x-ray diffraction
  • strength
  • cement
  • thermogravimetry
  • isothermal calorimetry