People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ke, Xinyuan
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Improving the pozzolanic reactivity of clay, marl and obsidian through mechanochemical or thermal activationcitations
- 2023Carbonation Rate of Alkali-Activated Concretes
- 2023RILEM TC 281-CCC Working Group 6
- 2023Development and characterisation of an alginate and expanded graphite based composite for thermochemical heat storagecitations
- 2022The impact of mechanochemical activation on the physicochemical properties and pozzolanic reactivity of kaolinite, muscovite and montmorillonitecitations
- 2022Biomass Bottom Ash as Supplementary Cementitious Material: The Effect of Mechanochemical Pre-Treatment and Mineral Carbonationcitations
- 2022Carbonation rate of alkali-activated concretes and high-volume SCM concretescitations
- 2021Activator Anion Influences the Nanostructure of Alkali-Activated Slag Cementscitations
- 2020Incorporation of strontium and calcium in geopolymer gelscitations
- 2019Layered double hydroxides modify the reaction of sodium silicate-activated slag cementscitations
- 2018Slag and Activator Chemistry Control the Reaction Kinetics of Sodium Metasilicate-Activated Slag Cementscitations
- 2018Metakaolin-based geopolymers for nuclear waste encapsulationcitations
- 2017Alternative inorganic binders based on alkali-activated metallurgical slagscitations
- 2017Characterization of supplementary cementitious materials by thermal analysiscitations
Places of action
Organizations | Location | People |
---|
article
Biomass Bottom Ash as Supplementary Cementitious Material: The Effect of Mechanochemical Pre-Treatment and Mineral Carbonation
Abstract
The need to mitigate the CO2 emissions deriving from the cement industry becomes imperative as the climate crisis advances. An effective strategy to achieve this is increasing the replacement level of cement clinkers by waste-derived supplementary cementitious materials (SCMs). In this study, the use of mechanochemically activated biomass ash for high-volume (up to 40%) substitution of cement is investigated. The effect of mineral carbonation treatment on the performance of the mechanochemically treated biomass ash as SCM was also examined. The results showed that the mechanochemically treated biomass ash was the most effective SCM, with the respective samples at 40% cement replacement reaching 63% of the strength at 28 days as compared to samples with 100% Portland cement, while only 17% of the strength was achieved in samples with 40% untreated biomass ash. As suggested by the isothermal calorimetry, XRD, FTIR, and TG analysis, the mechanochemical treatment enhanced the reactivity and the filler effect of the biomass ash, leading to improved mechanical performances of these mortars compared to those containing untreated biomass ash. Mineral carbonation reduced the reactivity of the mechanochemically treated biomass ash but still led to better strength performances in comparison to the untreated biomass ash.