Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Matos, Paulo De

  • Google
  • 1
  • 2
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Evaluating the Feasibility of Using Brick Powder and Clay Powder in Cement Replacement3citations

Places of action

Chart of shared publication
Szeląg, Maciej
1 / 5 shared
Rumiński, Patryk
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Szeląg, Maciej
  • Rumiński, Patryk
OrganizationsLocationPeople

article

Evaluating the Feasibility of Using Brick Powder and Clay Powder in Cement Replacement

  • Matos, Paulo De
  • Szeląg, Maciej
  • Rumiński, Patryk
Abstract

<jats:p>The cement industry generates very large amounts of CO2 into the atmosphere. In recent years, there has been a search for alternative cementitious materials and micro-fillers that could partially or fully replace cement in cement composites without compromising their durability. This paper investigates the possibility of using brick powder (BP) and clay powder (CP) as a partial replacement for cement (up to 20% by weight) in cement paste. The raw materials were characterized, and the physical and mechanical properties of the modified cement pastes were studied, as well as their resistance to a short-term thermal shock at 250 °C. The study was supplemented by intelligent modelling of compressive strength using the support vector machine (SVM) algorithms. The results indicated a significant increase in tensile strength (up to 100%) and an increase in thermal resistance of cement pastes modified with BP and CP. The proposed SVM model had high accuracy (R2 = 0.90), indicating its suitability to predict the compressive strength of the modified cement matrix. This study complements the knowledge in the field of inter alia, the effect of a short-term thermal shock at elevated temperature on the properties of BP and CP modified cement paste, and the effect of BP, which, due to its grain size, plays more the role of a microfiller than a pozzolanic additive.</jats:p>

Topics
  • grain
  • grain size
  • strength
  • composite
  • cement
  • tensile strength
  • durability