People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khan, Mushtaq
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Employing Metal-Enriched Polymeric Composites: An Innovative Approach for Combatting Microbes and Bacteria in Building Components in Public Places
- 2024Machinability performance of single coated and multicoated carbide tools during turning Ti6Al4V alloy.citations
- 2024Machinability performance of single coated and multicoated carbide tools during turning Ti6Al4V alloycitations
- 2023Investigating the Properties and Characterization of a Hybrid 3D Printed Antimicrobial Composite Material Using FFF Process: Innovative and Swiftcitations
- 2023Antibacterial Efficacy of Non-Copper Polymer Based Composite Enhanced with Metallic Particles Using Fused Deposition Modelingcitations
- 2022Dynamic analysis of closed die electromagnetic sheet metal forming to predict deformation and failure of AA6061-T6 alloy using a fully coupled finite element model.citations
- 2022Dynamic Analysis of Closed Die Electromagnetic Sheet Metal Forming to Predict Deformation and Failure of AA6061-T6 Alloy Using a Fully Coupled Finite Element Modelcitations
- 2022Effects of Machining Parameters on Feed Direction Cutting Forces in Meso-Scale End-Milling of Ti-6Al-4V Under Dry, Wet and MQL Environmentcitations
- 2020Fretting fatigue crack initiation and propagation in Ti6Al4V sheets under tribocorrosive conditions of artificial seawater and physiological solutionscitations
- 2019Statistical analysis of energy consumption, tool wear and surface roughness in machining of Titanium alloy (Ti-6Al-4V) under dry, wet and cryogenic conditionscitations
- 2019Analysis of Burr Formation in Low Speed Micro-milling of Titanium Alloy (Ti-6Al-4V)citations
- 2018Finite Element Modeling and Analysis of Ultrasonically-Assisted Drilling of Bonecitations
- 2018Analysis of Burr Formation in Low Speed Micro-milling of Titanium Alloy (Ti-6Al-4V)citations
- 2018Numerical and experimental investigation of Johnson–Cook material models for aluminum (Al 6061-T6) alloy using orthogonal machining approachcitations
- 2016Statistical analysis of process parameters in micromachining of Ti-6Al-4V alloycitations
- 2015In-vitro experimental analysis and numerical study of temperature in bone drillingcitations
- 2015Improvement in the Mechanical Properties of High Temperature Shape Memory Alloy (Ti50Ni25Pd25) by Copper Additioncitations
- 2014Parametric study of development of inconel-steel functionally graded materials by laser direct metal depositioncitations
- 2013Statistical analysis of the effect of machining parameters on fatigue life of aerospace grade aluminum alloy (AL 6082T6)
Places of action
Organizations | Location | People |
---|
article
Dynamic Analysis of Closed Die Electromagnetic Sheet Metal Forming to Predict Deformation and Failure of AA6061-T6 Alloy Using a Fully Coupled Finite Element Model
Abstract
<jats:p>This research presents a fully coupled 3D numerical model to analyse the dynamics of high-speed electromagnetic forming process for aluminium alloy AA6061-T6. The effect of Lorentz force distribution, velocity and kinetic energy on deformation, the bounce back effect and failure of the sheet has been investigated. Experiments were performed for AA6061-T6 alloy using an 18.750 KJ electromagnetic forming machine for varying the sheet thickness (0.5 mm, 1.02 mm and 1.63 mm) compared with the simulation results. The results showed that increasing the sheet thickness increases the Lorentz force due to a higher induced current. The inertial forces were more pronounced in thicker sheets (1.63 mm) as compared to the thinner sheets (0.5 mm and 1.02 mm), resulting in a higher bounce back effect for the thicker sheet. The numerical model accurately predicted the sheet failure for the 0.5-mm sheet, as also observed from the experimentation. The sheet deformation from simulations was found to be in good agreement with the experimental results.</jats:p>