People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Łagód, Grzegorz
Lublin University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Application of Dimensionality Reduction and Machine Learning Methods for the Interpretation of Gas Sensor Array Readouts from Mold-Threatened Buildingscitations
- 2022Determination of Time Domain Reflectometry Surface Sensors Sensitivity Depending on Geometry and Material Moisturecitations
- 2022Influence of Water with Oxygen and Ozone Micro-Nano Bubbles on Concrete Physical Propertiescitations
- 2020Experimental and Computational Study of Thermal Processes in Red Clays Exposed to High Temperaturescitations
Places of action
Organizations | Location | People |
---|
article
Influence of Water with Oxygen and Ozone Micro-Nano Bubbles on Concrete Physical Properties
Abstract
<jats:p>In this study, the possibility of using mixing water containing O2 and O3 micro-nano bubbles (M-NBs) in concrete technology was investigated. In particular, the effect of micro-nano bubbles on the durability and frost resistance of concrete was analyzed. Concretes with two types of micro-nano bubbles were studied. The physical properties of both the modified concretes and the reference concrete were determined, i.e., specific and apparent density, porosity, weight absorption and coefficient of water absorption. Mechanical parameters based on compressive and flexural strength were tested after 14 and 28 days of curing. Concrete durability was determined on the basis of frost resistance and resistance to salt crystallization. The pore distribution in the cement matrix was determined based on porosimetry studies. The use of water with micro-nano bubbles of O2 and O3, among others, contributed to a reduction in the water absorption coefficient from 42.7% to 52.3%, in comparison to the reference concrete. The strength characterizing the concrete with O3 increased by 61% after 28 days, and the frost resistance after 150 F-T cycles increased by 2.4 times. Resistance to salt crystallization improved by 11% when water with O3 was used.</jats:p>