Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Labunet, Anca

  • Google
  • 1
  • 10
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Mechanical Properties of Orthodontic Cements and Their Behavior in Acidic Environments7citations

Places of action

Chart of shared publication
Barbu-Tudoran, Lucian
1 / 9 shared
Iosif, Cristina
1 / 2 shared
Chifor, Radu
1 / 2 shared
Man, Sorin Claudiu
1 / 2 shared
Moldovan, Marioara
1 / 5 shared
Prodan, Doina
1 / 6 shared
Cuc, Stanca
1 / 6 shared
Badea, Mîndra Eugenia
1 / 2 shared
Petean, Ioan
1 / 6 shared
Badea, Iulia Clara
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Barbu-Tudoran, Lucian
  • Iosif, Cristina
  • Chifor, Radu
  • Man, Sorin Claudiu
  • Moldovan, Marioara
  • Prodan, Doina
  • Cuc, Stanca
  • Badea, Mîndra Eugenia
  • Petean, Ioan
  • Badea, Iulia Clara
OrganizationsLocationPeople

article

Mechanical Properties of Orthodontic Cements and Their Behavior in Acidic Environments

  • Barbu-Tudoran, Lucian
  • Iosif, Cristina
  • Chifor, Radu
  • Man, Sorin Claudiu
  • Moldovan, Marioara
  • Prodan, Doina
  • Cuc, Stanca
  • Badea, Mîndra Eugenia
  • Petean, Ioan
  • Badea, Iulia Clara
  • Labunet, Anca
Abstract

<jats:p>The present research is focused on three different classes of orthodontic cements: resin composites (e.g., BracePaste); resin-modified glass ionomer RMGIC (e.g., Fuji Ortho) and resin cement (e.g., Transbond). Their mechanical properties such as compressive strength, diametral tensile strength and flexural strength were correlated with the samples’ microstructures, liquid absorption, and solubility in liquid. The results show that the best compressive (100 MPa) and flexural strength (75 Mpa) was obtained by BracePaste and the best diametral tensile strength was obtained by Transbond (230 MPa). The lowestvalues were obtained by Fuji Ortho RMGIC. The elastic modulus is relatively high around 14 GPa for BracePaste, and Fuji Ortho and Transbond have only 7 GPa. The samples were also subjected to artificial saliva and tested in different acidic environments such as Coca-Cola and Red Bull. Their absorption and solubility were investigated at different times ranging from 1 day to 21 days. Fuji Ortho presents the highest liquid absorption followed by Transbond, the artificial saliva has the best absorption and Red Bull has the lowest absorption. The best resistance to the liquids was obtained by BracePaste in all environments. Coca-Cola presents values four times greater than the ones observed for artificial saliva. Solubility tests show that BracePaste is more soluble in artificial saliva, and Fuji Ortho and Transbond are more soluble in Red Bull and Coca-Cola. Scanning electron microscopy (SEM) images evidenced a compact structure for BracePaste in all environments sustaining the lower liquid absorption values. Fuji Ortho and Transbond present a fissure network allowing the liquid to carry out in-depth penetration of materials. SEM observations are in good agreement with the atomic force microscopy (AFM) results. The surface roughness decreases with the acidity increasing for BracePaste meanwhile it increases with the acidity for Fuji Ortho and Transbond. In conclusion: BracePaste is recommended for long-term orthodontic treatment for patients who regularly consume acidic beverages, Fuji Ortho is recommended for short-term orthodontic treatment for patients who regularly consume acidic beverages and Transbond is recommended for orthodontic treatment over an average time period for patients who do not regularly consume acidic beverages.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • scanning electron microscopy
  • atomic force microscopy
  • glass
  • glass
  • strength
  • composite
  • cement
  • flexural strength
  • tensile strength
  • resin