People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhu, Pang
University of Freiburg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Superrepellent Porous Polymer Surfaces by Replication from Wrinkled Polydimethylsiloxane/Parylene F
Abstract
<jats:p>Superrepellent surfaces, such as micro/nanostructured surfaces, are of key importance in both academia and industry for emerging applications in areas such as self-cleaning, drag reduction, and oil repellence. Engineering these surfaces is achieved through the combination of the required surface topography, such as porosity, with low-surface-energy materials. The surface topography is crucial for achieving high liquid repellence and low roll-off angles. In general, the combination of micro- and nanostructures is most promising in achieving high repellence. In this work, we report the enhancement of wetting properties of porous polymers by replication from wrinkled Parylene F (PF)-coated polydimethylsiloxane (PDMS). Fluorinated polymer foam “Fluoropor” serves as the low-surface-energy polymer. The wrinkled molds are achieved via the deposition of a thin PF layer onto the soft PDMS substrates. Through consecutive supercritical drying, superrepellent surfaces with a high surface porosity and a high water contact angle (CA) of >165° are achieved. The replicated surfaces show low roll-off angles (ROA) <10° for water and <21° for ethylene glycol. Moreover, the introduction of the micro-wrinkles to Fluoropor not only enhances its liquid repellence for water and ethylene glycol but also for liquids with low surface tension, such as n-hexadecane.</jats:p>