People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Majdi, Ali
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Microstructure and Wear Behaviour Assessment of Different Micron-Sized B<sub>4</sub>C Reinforced Al2021 Alloy Composites
- 2023Basalt Fiber Reinforced Concrete: A Compressive Review on Durability Aspectscitations
- 2022Improving the Self-Healing of Cementitious Materials with a Hydrogel Systemcitations
- 2022A Comprehensive Review on the Ground Granulated Blast Furnace Slag (GGBS) in Concrete Productioncitations
- 2022A Review on Failure Modes and Cracking Behaviors of Polypropylene Fibers Reinforced Concretecitations
- 2022A Study on Sustainable Concrete with Partial Substitution of Cement with Red Mud: A Reviewcitations
- 2022A Step towards Sustainable Concrete with Substitution of Plastic Waste in Concrete: Overview on Mechanical, Durability and Microstructure Analysiscitations
- 2022Feasibility Study on Concrete Made with Substitution of Quarry Dust: A Reviewcitations
Places of action
Organizations | Location | People |
---|
article
A Study on Sustainable Concrete with Partial Substitution of Cement with Red Mud: A Review
Abstract
<jats:p>Every year, millions of tons of red mud (RDM) are created across the globe. Its storage is a major environmental issue due to its high basicity and tendency for leaching. This material is often kept in dams, necessitating previous attention to the disposal location, as well as monitoring and maintenance during its useful life. As a result, it is critical to develop an industrial solution capable of consuming large quantities of this substance. Many academics have worked for decades to create different cost-effective methods for using RMD. One of the most cost-effective methods is to use RMD in cement manufacture, which is also an effective approach for large-scale RMD recycling. This article gives an overview of the use of RMD in concrete manufacturing. Other researchers’ backgrounds were considered and examined based on fresh characteristics, mechanical properties, durability, microstructure analysis, and environmental impact analysis. The results show that RMD enhanced the mechanical properties and durability of concrete while reducing its fluidity. Furthermore, by integrating 25% of RDM, the environmental consequences of cumulative energy demand (CED), global warming potential (GWP), and major criteria air pollutants (CO, NOX, Pb, and SO2) were minimized. In addition, the review assesses future researcher guidelines for concrete with RDM to improve performance.</jats:p>