People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Robinson, John
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 20243D printed CoCrMo personalised load-bearing meta-scaffold for critical size tibial reconstructioncitations
- 2024Acoustic metamaterials for sound absorption and insulation in buildingscitations
- 2023Melt Pool Monitoring and X-ray Computed Tomography-Informed Characterisation of Laser Powder Bed Additively Manufactured Silver–Diamond Compositescitations
- 2022Smart Tribological Coatingcitations
- 2022Crushing and energy absorption properties of additively manufactured concave thin-walled tubescitations
- 2022Electrical conductivity of additively manufactured copper and silver for electrical winding applicationscitations
- 2022Electrical Conductivity of Additively Manufactured Copper and Silver for Electrical Winding Applicationscitations
- 2022Electrical Conductivity of Additively Manufactured Copper and Silver for Electrical Winding Applications
- 2021Deformation and energy absorption of additively manufactured functionally graded thickness thin-walled circular tubes under lateral crushingcitations
- 2021Mechanical and thermal performance of additively manufactured copper, silver and copper–silver alloyscitations
- 2021Additive manufacturing of anti-SARS-CoV-2 Copper-Tungsten-Silver alloycitations
- 2021Additive manufacturing of anti-SARS-CoV-2 copper-tungsten-silver alloycitations
- 20213D printed auxetic nasopharyngeal swabs for COVID-19 sample collectioncitations
- 2021Mechanical and thermal performance of additively manufactured copper, silver, and copper-silver alloyscitations
- 2021Smart tribological coatingcitations
- 20213d printed cobalt-chromium-molybdenum porous superalloy with superior antiviral activitycitations
- 2020Effect of silver addition in copper-silver alloys fabricated by laser powder bed fusion in situ alloyingcitations
- 2020Stable formation of powder bed laser fused 99.9% silvercitations
- 2020Mechanical performance of additively manufactured pure silver antibacterial bone scaffoldscitations
- 2020Mechanical performance of additively manufactured pure silver antibacterial bone scaffoldscitations
- 2020Correlation between selective laser melting parameters, pore defects and tensile properties of 99.9 % silvercitations
Places of action
Organizations | Location | People |
---|
article
Electrical Conductivity of Additively Manufactured Copper and Silver for Electrical Winding Applications
Abstract
<jats:p>Efficient and power-dense electrical machines are critical in driving the next generation of green energy technologies for many industries including automotive, aerospace and energy. However, one of the primary requirements to enable this is the fabrication of compact custom windings with optimised materials and geometries. Electrical machine windings rely on highly electrically conductive materials, and therefore, the Additive Manufacturing (AM) of custom copper (Cu) and silver (Ag) windings offers opportunities to simultaneously improve efficiency through optimised materials, custom geometries and topology and thermal management through integrated cooling strategies. Laser Powder Bed Fusion (L-PBF) is the most mature AM technology for metals, however, laser processing highly reflective and conductive metals such as Cu and Ag is highly challenging due to insufficient energy absorption. In this regard, this study details the 400 W L-PBF processing of high-purity Cu, Ag and Cu–Ag alloys and the resultant electrical conductivity performance. Six Cu and Ag material variants are investigated in four comparative studies characterising the influence of material composition, powder recoating, laser exposure and electropolishing. The highest density and electrical conductivity achieved was 88% and 73% IACS, respectively. To aid in the application of electrical insulation coatings, electropolishing parameters are established to improve surface roughness. Finally, proof-of-concept electrical machine coils are fabricated, highlighting the potential for 400 W L-PBF processing of Cu and Ag, extending the current state of the art.</jats:p>