Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Román Caldelas, Manuel

  • Google
  • 1
  • 8
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022An Experimental Analysis of the High-Cycle Fatigue Fracture of H13 Hot Forging Tool Steels7citations

Places of action

Chart of shared publication
Valverde-Pérez, Sara
1 / 1 shared
Magdalena, César
1 / 2 shared
Badaoui, Aida
1 / 2 shared
Moreira, Pedro
1 / 9 shared
Calvo-García, Erik
1 / 1 shared
Comesaña, Rafael
1 / 2 shared
Álvarez, David
1 / 1 shared
Riveiro Rodriguez, Antonio
1 / 9 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Valverde-Pérez, Sara
  • Magdalena, César
  • Badaoui, Aida
  • Moreira, Pedro
  • Calvo-García, Erik
  • Comesaña, Rafael
  • Álvarez, David
  • Riveiro Rodriguez, Antonio
OrganizationsLocationPeople

article

An Experimental Analysis of the High-Cycle Fatigue Fracture of H13 Hot Forging Tool Steels

  • Valverde-Pérez, Sara
  • Magdalena, César
  • Badaoui, Aida
  • Moreira, Pedro
  • Román Caldelas, Manuel
  • Calvo-García, Erik
  • Comesaña, Rafael
  • Álvarez, David
  • Riveiro Rodriguez, Antonio
Abstract

<jats:p>In this study, the axial fatigue behaviour of hot forging tool steels at room temperature was investigated. Fatigue tests were performed on two steels within the same H13 specification. The fatigue tests were carried out in the high-cycle fatigue domain under normal conditions. These tests were also performed on specimens in contact with a corrosive medium, applying stress values that led to the high-cycle fatigue domain under normal conditions for the sake of comparison. Both materials showed similar fatigue strengths when they were tested under normal conditions. In contrast, corrosion fatigue lives were much lower than in normal tests and differed significantly between the two steels. Crack initiation was triggered by microstructural and surface defects in the normal tests, whereas the formation of corrosion pits caused crack initiation in the corrosion fatigue tests. Moreover, a fracture surface analysis revealed dissimilar crack propagation areas between both steels, which suggested that both steels had different fracture toughness. These results were in line with the differences observed between the carbide and grain sizes of both of the material microstructures.</jats:p>

Topics
  • surface
  • grain
  • corrosion
  • grain size
  • crack
  • strength
  • carbide
  • fatigue
  • tool steel
  • fracture toughness
  • forging