Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Prasanthi, Phani

  • Google
  • 2
  • 10
  • 59

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Mechanical properties of carbon fiber reinforced with carbon nanotubes and graphene filled epoxy composites: experimental and numerical investigations49citations
  • 2022Elastic Properties of Jute Fiber Reinforced Polymer Composites with Different Hierarchical Structures10citations

Places of action

Chart of shared publication
Khan, Muhammad Ijaz
1 / 1 shared
Kumar, M. S. R. Niranjan
1 / 2 shared
Madhav, Dr V. V. Venu
2 / 2 shared
Upadhyay, Gaurav
1 / 3 shared
Eldin, Sayed M.
1 / 9 shared
Mohammed, Kahtan A.
1 / 10 shared
Linul, Emanoil
1 / 5 shared
Morampudi, Niranjan Kumar Sita Rama
1 / 1 shared
Kondapalli, Sivaji Babu
1 / 1 shared
Mohammed, Kahtan Adnan
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Khan, Muhammad Ijaz
  • Kumar, M. S. R. Niranjan
  • Madhav, Dr V. V. Venu
  • Upadhyay, Gaurav
  • Eldin, Sayed M.
  • Mohammed, Kahtan A.
  • Linul, Emanoil
  • Morampudi, Niranjan Kumar Sita Rama
  • Kondapalli, Sivaji Babu
  • Mohammed, Kahtan Adnan
OrganizationsLocationPeople

article

Elastic Properties of Jute Fiber Reinforced Polymer Composites with Different Hierarchical Structures

  • Madhav, Dr V. V. Venu
  • Linul, Emanoil
  • Prasanthi, Phani
  • Morampudi, Niranjan Kumar Sita Rama
  • Kondapalli, Sivaji Babu
  • Mohammed, Kahtan Adnan
Abstract

<jats:p>A two-stage micromechanics technique is used to predict the elastic modulus, as well as the major and minor Poisson’s ratio of unidirectional natural fiber (NF) reinforced composites. The actual NF microstructure consists of cellulose, hemicellulose, lignin, lumen, etc., and these constituents and their contributions are neglected in classical models while quantifying their mechanical properties. The present paper addresses the effect of the real microstructure of the natural jute fiber (JF) by applying a micromechanics approach with the Finite Element Method. Six different hierarchically micro-structured JFs are considered to quantify the JF elastic properties in the first level of homogenization. Later, the JF reinforced polypropylene matrix properties are investigated in the second stage by adopting a homogenization approach. Taking into account the different hierarchical structures (HS), the fiber direction modulus (E1), transverse modulus (E2 and E3), in-plane and out-of-plane shear modulus (G12 and G23), and major (ν12, ν13) and minor (ν23, ν21) Poisson’s ratios are estimated for JF and JF reinforced polypropylene composites. The predicted elastic modulus from micromechanics models is validated against the analytical results and experimental predictions. From the present work, it is observed that the HS of NF needs to be considered while addressing the elastic properties of the NF-reinforced composite for their effective design, particularly at a higher volume fraction of NF.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • composite
  • lignin
  • cellulose
  • homogenization