People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bender, Marcel
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Reprocessable carbon fiber vitrimer composites: Reclamation and reformatting of carbon fibers for second generation composite materials
- 2024Effect of different weft-knitted structures on the mechanical performance of bio-based flexible compositescitations
- 2023Inferring material properties from FRP processes via sim-to-real learningcitations
- 2023Thermally Latent Bases in Dynamic Covalent Polymer Networks and their Emerging Applicationscitations
- 2023Effect of Binder Activation on in-Plane Capillary Flow in Multilayer Stacks of Carbon Fiber Fabrics
- 2023Novel test-rig for compaction behaviour analysis of textile reinforcements for improved RTM-process replicationcitations
- 2022Gel Point Determination in Resin Transfer Molding Process with Fiber Bragg Grating Inscribed in Side-Hole Elliptical Core Optical Fibercitations
- 2022Compressibility and Relaxation Characteristics of Bindered Non-Crimp-Fabrics Under Temperature and Injection Fluid Influence
- 2021In-Plane Strain Measurement in Composite Structures with Fiber Bragg Grating Written in Side-Hole Elliptical Core Optical Fibercitations
Places of action
Organizations | Location | People |
---|
article
Gel Point Determination in Resin Transfer Molding Process with Fiber Bragg Grating Inscribed in Side-Hole Elliptical Core Optical Fiber
Abstract
Material as well as process variations in the composites industry are reasons to develop methods for in-line monitoring, which would increase reproducibility of the manufacturing process and the final composite products. Fiber Bragg Gratings (FBGs) have shown to be useful for monitoring liquid-composite molding processes, e.g., in terms of online gel point detection. Existing works however, focus on in-plane strain measurements while out-of-plane residual strain prevails. In order to measure out-of-plane strain, FBG inscribed in highly birefringent fiber (HB FBG) can be used. The purpose of this research is the cure stage detection with (a) FBG inscribed in single mode and (b) FBG inscribed in highly-birefringent side-hole fiber in comparison to the reference gel point detected with an in-mold DC sensor. Results reveal that the curing process is better traceable with HB FBG than with regular FBG. Thus, the use of HB FBG can be a good method for the gel point estimation in the RTM process.