Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Perner, Jakub

  • Google
  • 1
  • 3
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Comparison of the Influence of Two Types of Plasma Treatment of Short Carbon Fibers on Mechanical Properties of Epoxy Composites Filled with These Treated Fibers6citations

Places of action

Chart of shared publication
Tomková, Blanka
1 / 1 shared
Kormunda, Martin
1 / 5 shared
Novotná, Jana
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Tomková, Blanka
  • Kormunda, Martin
  • Novotná, Jana
OrganizationsLocationPeople

article

Comparison of the Influence of Two Types of Plasma Treatment of Short Carbon Fibers on Mechanical Properties of Epoxy Composites Filled with These Treated Fibers

  • Tomková, Blanka
  • Perner, Jakub
  • Kormunda, Martin
  • Novotná, Jana
Abstract

<jats:p>The interfacial interface between fibers and matrix plays a key role for epoxy matrix composites and short recycled randomly arranged fibers. This study used short recycled carbon fiber (RCF) as a filler. Plasma treatment was used for carbon fiber surface treatment. This treatment was performed using radio (RF) and microwave (MW) frequencies at the same pressure and atmosphere. Appropriate chemical modification of the fiber surfaces helps to improve the wettability of the carbon fibers and, at the same time, allows the necessary covalent bonds to form between fibers and the epoxy matrix. The effect of the plasma treatment was analyzed and confirmed by X-ray photoelectron spectroscopy, Raman microscopy, scanning electron microscopy, transmission electron microscopy and wettability measurements. Composite samples filled with recycled carbon fibers with low concentrations (1 wt%, 2.5 wt% and 5 wt%) and high concentrations (20 wt% and 30 wt%) were made from selected treated fibers. The mechanical properties (impact toughness, 3PB) were analyzed on these samples. It was found that the modulus of elasticity and bending stress increase with the increasing content of recycled carbon fibers. A more significant change in impact strength occurred in samples with low concentration.</jats:p>

Topics
  • surface
  • Carbon
  • scanning electron microscopy
  • x-ray photoelectron spectroscopy
  • strength
  • composite
  • transmission electron microscopy
  • elasticity
  • Raman microscopy