Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mertiny, Pierre

  • Google
  • 2
  • 4
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Multifunctional Hybrid Fiber Composites for Energy Transfer in Future Electric Vehicles2citations
  • 2014Effect of Nanocomposite Structures on Fracture Behavior of Epoxy-Clay Nanocomposites Prepared by Different Dispersion Methods36citations

Places of action

Chart of shared publication
Adam, Till Julian
1 / 4 shared
Wierach, Peter
1 / 44 shared
Bashar, Mohammad
1 / 1 shared
Sundararaj, Uttandaraman
1 / 10 shared
Chart of publication period
2022
2014

Co-Authors (by relevance)

  • Adam, Till Julian
  • Wierach, Peter
  • Bashar, Mohammad
  • Sundararaj, Uttandaraman
OrganizationsLocationPeople

article

Multifunctional Hybrid Fiber Composites for Energy Transfer in Future Electric Vehicles

  • Adam, Till Julian
  • Wierach, Peter
  • Mertiny, Pierre
Abstract

Reducing the weight of electric conductors is an important task in the design of future electric air and ground vehicles. Fully electric aircraft, where high electric energies have to be distributed over significant distances, are a prime example. Multifunctional composite materials with both adequate structural and electrical properties are a promising approach to substituting conventional monofunctional components and achieving considerable mass reductions. In this paper, a hybrid multifunctional glass-fiber-reinforced composite containing quasi-endless aluminum fibers with a diameter of 45 μm is proposed for electric energy transfer. In addition to characterizing the material’s behavior under static and fatigue loads, combined electrical-mechanical tests are conducted to prove the material’s capability of carrying electric current. Light microscopy, thermal imaging and potentiometry-based resistance characterization are used to investigate the damage behavior. It is found that a volume fraction of about 10% work-hardened aluminum fibers does not affect the static fiber-parallel material properties significantly. Under transverse loading, however, the tensile strength is found to decrease by 17% due to the weak bonding of the aluminum fibers. The fiber-parallel fatigue strength of the multifunctional laminate containing work-hardened aluminum fibers is comparable to that of the reference material. In contrast, the integration of soft-annealed aluminum fibers decreases the tensile strength (−10%) and fatigue life (−21%). Concerning the electrical properties, electrical resistance is nearly unchanged until specimen rupture under quasi-static tensile loads, whereas under cyclic loading, it increases up to 60% within the last third of the fatigue life. Furthermore, the material’s capability of carrying currents up to 0.32 A/mm2 (current density of 4.5 A/mm2 in the aluminum phase) is proven. Under combined electrical-mechanical loads, a notable reduction in the fatigue life (−20%) is found at low fatigue loads, which is attributed to ohmic specimen heating. To the best knowledge of the authors, this is the first study on the electrical and mechanical material properties and damage behavior of glass-fiber-reinforced composites containing aluminum fibers tested under combined electrical-mechanical loads.

Topics
  • density
  • impedance spectroscopy
  • phase
  • aluminium
  • glass
  • glass
  • strength
  • fatigue
  • tensile strength
  • current density
  • fiber-reinforced composite
  • microscopy
  • thermography
  • potentiometry