People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yakushina, Evgenia
Laboratory of Microstructure Studies and Mechanics of Materials
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Deep learning enhanced Watershed for microstructural analysis using a boundary class semantic segmentationcitations
- 2023Development of the forming limit diagram for AA6016-T4 at room temperature using uniaxial tension of notched samples and a biaxial testcitations
- 2022Tailoring titanium sheet metal using laser metal deposition to improve room temperature single-point incremental formingcitations
- 2021Effect of machining induced microstructure changes on the edge formability of titanium alloys at room temperature
- 2021Influence of longitudinal scratch defects on the bendability of titanium alloycitations
- 2020Influence of sheet conditions on in-plane strain evolution via ex-situ tensile deformation of Ti-3Al-2.5V at room temperaturecitations
- 2020Examining failure behaviour of commercially pure titanium during tensile deformation and hole expansion testcitations
- 2020Impact of machining induced surface defects on the edge formability of commercially pure titanium sheet at room temperaturecitations
- 2019Effect of edge conditions on the formability of commercially pure titanium sheet (Grade 2) at room temperature
- 2018The influence of the microstructure morphology of two phase Ti-6Al-4V alloy on the mechanical properties of diffusion bonded jointscitations
- 2017Automated microstructural analysis of titanium alloys using digital image processingcitations
- 2017An evaluation of H13 tool steel deformation in hot forging conditioncitations
- 2014Mechanical Properties and Microstructure of AZ31B Magnesium Alloy Processed by I-ECAPcitations
- 2014Modelling of active transformation of microstructure of two-phase Ti alloys during hot workingcitations
- 2013Mechanical properties and microstructure of AZ31B magnesium alloy processed by I-ECAP.citations
- 2010Corrosion behavior of titanium materials with an ultrafine-grained structurecitations
- 2009Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue propertiescitations
- 2008Effect of cold rolling on the structure and mechanical properties of sheets from commercial titaniumcitations
Places of action
Organizations | Location | People |
---|
article
Tailoring titanium sheet metal using laser metal deposition to improve room temperature single-point incremental forming
Abstract
Typically, due to their limited formability, elevated temperatures are required in order to achieve complex shapes in titanium alloys. However, there are opportunities for forming such alloys at room temperature using incremental forming processes such as single-point incremental forming (SPIF). SPIF is an innovative metal forming technology which uses a single tool to form sheet parts in place of dedicated dies. SPIFs ability to increase the forming limits of difficult-to-form materials offers an alternative to high temperature processing of titanium. However, sheet thinning during SPIF may encourage the early onset of fracture, compromising in-service performance. An additive step prior to SPIF has been examined to tailor the initial sheet thickness to achieve a homogeneous thickness distribution in the final part. In the present research, laser metal deposition (LMD) was used to locally thicken a commercially pure titanium grade 2 (CP-Ti50A) sheet. Tensile testing was used to examine the mechanical behaviour of the tailored material. In addition, in-situ digital image correlation was used to measure the strain distribution across the surface of the tailored material. The work found that following deposition, isotropic mechanical properties were obtained within the sheet plane in contrast to the anisotropic properties of the as-received material and build height appeared to have little influence on strength. Microstructural analysis showed a change to the material in response to the LMD added thickness, with a heat affected zone (HAZ) at the interface between the added LMD layer and non-transformed substrate material. Grain growth and intragranular misorientation in the added LMD material was observed. SPIF of a LMD tailored preform resulted in improved thickness homogeneity across the formed part, with the downside of early fracture in a high wall angle section of the sheet.