People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Novák, Pavel
University of Chemistry and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024The Role of Precipitates in Hydrogen Embrittlement of Precipitation-Hardenable Aluminum Alloyscitations
- 2024Trade-Off Between Wear/Corrosion Performance and Mechanical Properties in D-AlNiCo Poly-Quasicrystals Through CNT Addition to the Microstructurecitations
- 2023Aluminum alloys with natural ratio of alloying elements manufactured by powder metallurgycitations
- 2023Processing of Niobium-Alloyed High-Carbon Tool Steel via Additive Manufacturing and Modern Powder Metallurgycitations
- 2023Use of rapid solidification in processing of aluminum alloys with reduced deep-sea nodulescitations
- 2022Heat Treatment of Aluminum Alloys with the Natural Combination of Dopantscitations
- 2022Cast and Rapidly Solidified Aluminium Alloy with the Addition of Deep-Sea Nodules
- 2022Microstructural Characteristics of Al-Ti-B Inoculation Wires and Their Addition to the AlSi7Mg0.3 Alloycitations
- 2021Microstructure, Mechanical Properties, and Thermal Stability of Carbon-Free High Speed Tool Steel Strengthened by Intermetallics Compared to Vanadis 60 Steel Strengthened by Carbidescitations
- 2021Corrosion Properties of Mn-Based Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodulescitations
- 2021Solutions of critical raw materials issues regarding iron-based alloyscitations
- 2021The Effect of Simultaneous Si and Ti/Mo Alloying on High-Temperature Strength of Fe3Al-Based Iron Aluminidescitations
- 2019The effect of microstructure on hydrogen permeability of high strength steelscitations
Places of action
Organizations | Location | People |
---|
article
Heat Treatment of Aluminum Alloys with the Natural Combination of Dopants
Abstract
Aluminothermic reduction without the separation of individual metals is currently considered as a possible method for processing ferromanganese sea nodules and creating new alloys. In this study, the product of their reduction—a manganese-based polymetallic mixture—was added to pure aluminum, as a mixture of alloying elements in their natural ratios. After extrusion, two new aluminum alloys with a total percentage of metallic additives ranging from 1 to 6 percent were prepared. The possibilities of the precipitation strengthening of these aluminum alloys, especially those containing Mn, Fe, Si, Ni, and Cu, were investigated under a wide range of heat treatment conditions. After each tested combination of annealing and artificial aging temperatures, the phase composition and the microstructure changes were recorded by X-ray diffraction, optical, and scanning electron microscopy with EDS analysis. Under none of the tested heat treatment conditions is a significant hardening effect observed, even though the precipitate phases are observed by TEM. However, the changes in the morphology of the present intermetallic phases caused by the heat treatment are revealed, which highlights the further possible development of these multicomponent alloys. © 2022 by the authors.