Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Volodarskaja, Anastasia

  • Google
  • 2
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Microstructure Evolution in a GOES Thin Stripcitations
  • 2022Phase Transformation after Heat Treatment of Cr-Ni Stainless Steel Powder for 3D Printing6citations

Places of action

Chart of shared publication
Hradečný, Kryštof
1 / 1 shared
Palupčíková, Renáta
1 / 2 shared
Vodárek, Vlastimil
1 / 10 shared
Váňová, Petra
1 / 7 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Hradečný, Kryštof
  • Palupčíková, Renáta
  • Vodárek, Vlastimil
  • Váňová, Petra
OrganizationsLocationPeople

article

Phase Transformation after Heat Treatment of Cr-Ni Stainless Steel Powder for 3D Printing

  • Volodarskaja, Anastasia
Abstract

<jats:p>Today, Ni-Cr steel is used for advanced applications in the high-temperature and electrical industries, medical equipment, food industry, agriculture and is applied in food and beverage packaging and kitchenware, automotive or mesh. A study of input steel powder from various stages of the recycling process intended for 3D printing was conducted. In addition to the precise evaluation of the morphology, particle size and composition of the powders used for laser 3D printing, special testing and evaluation of the heat-treated powders were carried out. Heat treatment up to 950 °C in an air atmosphere revealed the properties of powders that can appear during laser sintering. The powders in the oxidizing atmosphere change the phase composition and the original FeNiCr stainless steel changes to a two-phase system of Fe3Ni and Cr2O3, as evaluated by X-ray diffraction analysis. Observation of the morphology showed the separation of the oxidic phase in the sense of a brittle shell. The inner part of the powder particle is a porous compact core. The particle size is generally reduced due to the peeling of the oxide shell. This effect can be critical to 3D printing processing, causing defects on the printed parts, as well as reducing the usability of the precursor powder and can also change the properties of the printed part.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • stainless steel
  • phase
  • x-ray diffraction
  • defect
  • sintering
  • laser sintering