People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Häntzsche, Eric Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Weft-knitted active joints for smart composite applications
- 2023Investigation of the Bonding Mechanism between Overlapping Textile Layers for FRP Repair Based on Dry Textile Patchescitations
- 2023Development of fiber-based piezoelectric sensors for the load monitoring of dynamically stressed fiber-reinforced compositescitations
- 2023Advancing Smart Textiles: Structural Evolution of Knitted Piezoresistive Strain Sensors for Enabling Precise Motion Capturecitations
- 2022Hinged Adaptive Fiber-Rubber Composites Driven by Shape Memory Alloys—Development and Simulationcitations
- 2022Protective Coating for Electrically Conductive Yarns for the Implementation in Smart Textilescitations
- 2022From Grave to Cradle - Development of Weft Knitted Fabrics Based on Hybrid Yarns from Recycled Carbon Fibre Reclaimed by Solvolytic Process from of EOL-Componentscitations
- 2022Experimental and Numerical Analysis of the Deformation Behavior of Adaptive Fiber-Rubber Composites with Integrated Shape Memory Alloyscitations
- 2022Recycling of Carbon Fibres and Subsequent Upcycling for the Production of 3D-CFRP Partscitations
- 2021Novel Repair Procedure for CFRP Components Instead of EOLcitations
- 2020Electro-mechanical characterization of shape memory alloy hybrid yarn based adaptive fiber-reinforced plasticscitations
- 2020In-situ load-monitoring of CFRP components using integrated carbon rovings as strain sensors
- 2020Matrix Decomposition of Carbon-Fiber-Reinforced Plastics via the Activation of Semiconductorscitations
- 2019Influence of Carbon Roving Strain Sensory Elements on the Mechanical Properties of Carbon Fibre-Reinforced Compositescitations
- 2019Integrated textile-based strain sensors for load monitoring of dynamically stressed CFP components
- 2019On the development of a function-integrative sleeve for medical applications
- 2019Integrierbare textilbasierte Dehnungssensoren für das Load-Monitoring dynamisch beanspruchter CFK-Bauteile
- 2018Multifunctional components from carbon concrete composites C³ - integrated, textile-based sensor solutions for in situ structural monitoring of adaptive building envelopescitations
- 2018Multiple functional coating highly inert fiber surfaces of para-aramid filament yarncitations
- 2017Multi-layered sensor yarns for in situ monitoring of textile reinforced compositescitations
- 2016Manufacturing technology of integrated textile-based sensor networks for in situ monitoring applications of composite wind turbine bladescitations
- 2015Integrative manufacturing of textile-based sensors for spatiallyl-resolved structural health monitoring tasks of large-scaled composite components.citations
- 2013A2.2 - Sensory characteristics of carbon fiber based strain sensors and integration techniques into textile reinforced structures for in situ monitoring of thermoplastic composites
Places of action
Organizations | Location | People |
---|
article
Recycling of Carbon Fibres and Subsequent Upcycling for the Production of 3D-CFRP Parts
Abstract
<p>Carbon fibres (CF) are used in CF reinforced plastic (CFRP) components. However, waste from CF yarn trim, CFRP and the end of life (EOL) CFRP structures will cause a recycling challenge in the next decades because of strict environmental regulations. Currently, recycling is carried out almost entirely by the use of pyrolysis to regain CF as a valuable resource. This high temperature process is energy consuming, and the resulting fibres are brittle. Hence, they are not suitable for processing of textiles into yarns or new reinforcement structures. To enable grave to cradle processing, a new approach based on a solvolysis recovery of CF and subsequent yarn spinning to obtain hybrid yarns suitable for textile processing, especially by weft knitting, was the focus of the international research project IGF/CORNET 256EBR. For the first time, it was possible to process hybrid yarns made of rCF on a weft knitting machine to produce biaxial reinforced structures to form CFRP from recycled carbon fibres. Therefore, various modifications were done on the textile machinery. In this way, it was possible to process the rCF and to get out a reproducible textile structure for the production of 3D recycled CFRP (rCFRP) parts.</p>