Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yehia, Sherif

  • Google
  • 11
  • 22
  • 128

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024Mechanical, electrical and self-healing properties of carbon fibre-reinforced ultra-lightweight ECC12citations
  • 2023Development and evaluation of conductive ultra-lightweight cementitious composites for smart and sustainable infrastructure applications24citations
  • 2023First principles and mean field study on the magnetocaloric effect of YFe3 and HoFe3 compounds7citations
  • 2023Shear performance of lightweight SCC composite beam internally reinforced with CFRP laminate stirrups and GFRP bars4citations
  • 2023Self-Consolidated Concrete-to-Conductive Concrete Interface2citations
  • 2023Shear strengthening performance of fiber reinforced lightweight SCC beams2citations
  • 2022DEVELOPMENT OF HIGH STRENGTH CONCRETE WITH FINE MATERIALS LOCALLY AVAILABLE IN UAEcitations
  • 2022Performance of Different Concrete Types Exposed to Elevated Temperatures31citations
  • 2022Effects of aggregate type, aggregate pretreatment method, supplementary cementitious materials, and macro fibers on fresh and hardened properties of high-strength all-lightweight self-compacting concrete1citations
  • 2021High strength flowable lightweight concrete incorporating low C3A cement, silica fume, stalite and macro-polyfelin polymer fibres32citations
  • 2020Lap splices in confined self-compacting lightweight concrete13citations

Places of action

Chart of shared publication
Sadakkathulla, Mohamed Ali
3 / 4 shared
Guo, Xiao
2 / 3 shared
Ran, Hongyu
2 / 2 shared
Boussaid, Farid
1 / 2 shared
Yang, Bo
5 / 20 shared
Abdel-Kader, Ahmed
1 / 1 shared
Hammad, Tarek
1 / 1 shared
Abu-Elmagd, Mohammed Said Mohammed
1 / 1 shared
Mohammad, Fatema Z.
1 / 1 shared
Aly, Samy H.
1 / 1 shared
El-Shamy, Nesreen
1 / 1 shared
Al-Ameri, Riyad
1 / 1 shared
Liu, Huiyuan
3 / 3 shared
Nawaz, Waleed
3 / 6 shared
Hassanli, Reza
1 / 10 shared
Landolsi, Taha
1 / 1 shared
Qaddoumi, Nasser
1 / 1 shared
El-Afandi, Mohammed
1 / 1 shared
Othman, Obida
1 / 1 shared
Alhamad, Amjad
1 / 1 shared
Lubloy, Eva
1 / 1 shared
Pham, Thong M.
1 / 5 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Sadakkathulla, Mohamed Ali
  • Guo, Xiao
  • Ran, Hongyu
  • Boussaid, Farid
  • Yang, Bo
  • Abdel-Kader, Ahmed
  • Hammad, Tarek
  • Abu-Elmagd, Mohammed Said Mohammed
  • Mohammad, Fatema Z.
  • Aly, Samy H.
  • El-Shamy, Nesreen
  • Al-Ameri, Riyad
  • Liu, Huiyuan
  • Nawaz, Waleed
  • Hassanli, Reza
  • Landolsi, Taha
  • Qaddoumi, Nasser
  • El-Afandi, Mohammed
  • Othman, Obida
  • Alhamad, Amjad
  • Lubloy, Eva
  • Pham, Thong M.
OrganizationsLocationPeople

article

Performance of Different Concrete Types Exposed to Elevated Temperatures

  • Yehia, Sherif
  • Alhamad, Amjad
  • Lubloy, Eva
Abstract

<p>Concrete is a heterogeneous material that consists of cement, aggregates, and water as basic constituents. Several cementitious materials and additives are added with different volumetric ratios to improve the strength and durability requirements of concrete. Consequently, performance of concrete when exposed to elevated temperature is greatly affected by the concrete type. Moreover, post-fire properties of concrete are influenced by the constituents of each concrete type. Heating rate, days of curing, type of curing, cooling method, and constituents of the mix are some of the factors that impact the post-fire behavior of concrete structures. In this paper, an extensive review was conducted and focused on the effect of concrete constituents on the overall behavior of concrete when exposed to elevated temperature. It was evident that utilizing fibers can improve the tensile capacity of concrete after exposure to higher temperatures. However, there is an increased risk of spalling due to the induced internal stresses. In addition, supplementary cementitious materials such as metakaolin and silica fume enhanced concrete strength, the latter proving to be the most effective. In terms of the heating process, it was clear that several constituents, such as silica fume or fly ash, that decrease absorption affect overall workability, increase the compressive strength of concrete, and can yield an increase in the strength of concrete at 200 degrees C. Most of the concrete types show a moderate and steady decrease in the strength up until 400 degrees C. However, the decrease is more rapid until the concrete reaches 800 degrees C or 1000 degrees C at which it spalls or cannot take any applied load. This review highlighted the need for more research and codes' provisions to account for different types of concrete constituents and advanced construction materials technology.</p>

Topics
  • impedance spectroscopy
  • strength
  • cement
  • durability
  • curing