People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Matei, Elena
National Institute of Materials Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Reduced graphene oxide-functionalized zinc oxide nanorods as promising nanocomposites for white light emitting diodes and reliable UV photodetection devicescitations
- 2022New Chalcogenide Glass-Ceramics Based on Ge-Zn-Se for IR Applicationscitations
- 2022New Chalcogenide Glass-Ceramics Based on Ge-Zn-Se for IR Applicationscitations
- 2020Combining Fluorinated Polymers with Ag Nanoparticles as a Route to Enhance Optical Properties of Composite Materialscitations
- 2020Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu2S–ZnS–SnS2 Thin Filmscitations
Places of action
Organizations | Location | People |
---|
article
New Chalcogenide Glass-Ceramics Based on Ge-Zn-Se for IR Applications
Abstract
<jats:p>The consumer market requests infrared (IR) optical components, made of relatively abundant and environmentally friendly materials, to be integrated or attached to smartphones. For this purpose, three new chalcogenides samples, namely Ge23.3Zn30.0Se46.7 (d_GZSe-1), Ge26.7Zn20.0Se53.3 (d_GZSe-2) and Ba4.0Ge12.0Zn17.0Se59.0I8.0 (d_GZSe-3) were obtained by mechanical alloying and processed by spark plasma sintering into dense bulk disks. Obtaining a completely amorphous and homogeneous material proved to be difficult. d_GZSe-2 and d_GZSe-3 are glass-ceramics with the amount of the amorphous phase being 19.7 and 51.4 wt. %, while d_GZSe-1 is fully polycrystalline. Doping with barium and iodine preserves the amorphous phase formed by milling and lowers the sintering temperature from 350 °C to 200 °C. The main crystalline phase in all of the prepared samples is cubic ZnSe or cubic Zn0.5Ge0.25Se, while in d_GZSe-3 the amorphous phase contains GeSe4 clusters. The color of the first two sintered samples is black (the band gap values are 0.42 and 0.79 eV), while d_GZSe-3 is red (Eg is 1.37 eV) and is transparent in IR domain. These results are promising for future research in IR materials and thin films.</jats:p>