People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sajdl, Petr
University of Chemistry and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Measurement system for in-situ estimation of instantaneous corrosion rate in supercritical watercitations
- 2023Beyond the Platinum Era─Scalable Preparation and Electrochemical Activation of TaS2 Flakescitations
- 2023Exploring morphological diversity of Q-carbon structures through laser energy density variationcitations
- 2022KrF Laser and Plasma Exposure of PDMS–Carbon Composite and Its Antibacterial Propertiescitations
- 2022Carbon Transformation Induced by High Energy Excimer Treatmentcitations
- 2022Surface modifications of a silicalite film designed for coating orthopaedic implantscitations
- 2022Plasma treatment of PTFE at elevated temperature: The effect of surface properties on its biological performancecitations
- 2021The effect of material and process parameters on the surface energy of polycaprolactone fibre layerscitations
- 2020Studium oxidových vrstev na slitinách zirkonia Ramanovou spektroskopií
- 2020Zr alloy protection against high-temperature oxidation: Coating by a double-layered structure with active and passive functional propertiescitations
- 2020Raman study of oxide layers on zirconium alloys using 18O tracerscitations
- 2020Cellulose acetate honeycomb-like pattern created by improved phase separationcitations
- 2017Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake : Nuclear fuel durability enhancementcitations
Places of action
Organizations | Location | People |
---|
article
Carbon Transformation Induced by High Energy Excimer Treatment
Abstract
The main aim of this study was to describe the treatment of carbon sheet with a high-energy excimer laser. The excimer modification changed the surface chemistry and morphology of carbon. The appearance of specific carbon forms and modifications have been detected due to exposure to laser beam fluencies up to 8 J.cm−2. High fluence optics was used for dramatic changes in the carbon layer with the possibility of Q-carbon formation; a specific amorphous carbon phase was detected with Raman spectroscopy. The changes in morphology were determined with atomic force microscopy and confirmed with scanning electron microscopy, where the partial formation of the Q-carbon phase was detected. Energy dispersive spectroscopy (EDS) was applied for a detailed study of surface chemistry. The particular shift of functional groups induced on laser-treated areas was determined by X-ray photoelectron spectroscopy. For the first time, high-dose laser exposure successfully induced a specific amorphous carbon phase. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.