People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zaharia, Sebastian Marian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Design and Testing of Brushless DC Motor Components of A6 Steel Additively Manufactured by Selective Laser Sinteringcitations
- 2022The Influence of Solar Sintering on Copper Heat Exchanger Parts with Controlled 3D-Printed Morphologycitations
- 2022Fused Filament Fabrication of Short Glass Fiber-Reinforced Polylactic Acid Composites: Infill Density Influence on Mechanical and Thermal Propertiescitations
- 2022Simulation, Fabrication and Testing of UAV Composite Landing Gearcitations
- 2022Infill Density Influence on Mechanical and Thermal Properties of Short Carbon Fiber-Reinforced Polyamide Composites Manufactured by FFF Processcitations
- 2022Compression and Bending Properties of Short Carbon Fiber Reinforced Polymers Sandwich Structures Produced via Fused Filament Fabrication Processcitations
Places of action
Organizations | Location | People |
---|
article
Infill Density Influence on Mechanical and Thermal Properties of Short Carbon Fiber-Reinforced Polyamide Composites Manufactured by FFF Process
Abstract
<jats:p>In three-dimensional (3D) printing, one of the main parameters influencing the properties of 3D-printed materials is the infill density (ID). This paper presents the influence of ID on the microstructure, mechanical, and thermal properties of carbon fiber-reinforced composites, commercially available, manufactured by the Fused Filament Fabrication (FFF) process. The samples were manufactured using FFF by varying the infill density (25%, 50%, 75%, and 100%) and were subjected to tensile tests, three-point bending, and thermal analyses by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). It was shown that the samples with 100% ID had the highest values of both tensile, 90.8 MPa, and flexural strengths, 114 MPa, while those with 25% ID had the lowest values of 56.4 MPa and 62.2 MPa, respectively. For samples with infill densities of 25% and 50%, the differences between the maximum tensile and flexural strengths were small; therefore, if the operating conditions of the components allow, a 25% infill density could be used instead of 50%. After DSC analysis, it was found that the variation in the ID percentage determined the change in the glass transition temperature from 49.6 °C, for the samples with 25% ID, to 32.9 °C, for those with 100% ID. TGA results showed that the samples with IDs of 75% and 100% recorded lower temperatures of onset degradation (approximately 344.75 °C) than those with infill densities of 25% and 50% (348.5 °C, and 349.6 °C, respectively).</jats:p>