People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jałbrzykowski, Marek
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024OH End-Capped Silicone as an Effective Nucleating Agent for Polylactide—A Robotizing Method for Evaluating the Mechanical Characteristics of PLA/Silicone Blendscitations
- 2023Beeswax as a natural alternative to synthetic waxes for fabrication of PLA/diatomaceous earth compositescitations
- 2022Aspects and Principles of Material Connections in Restorative Dentistry—A Comprehensive Reviewcitations
- 2022Biocomposites Based on Polyamide 11/Diatoms with Different Sized Frustulescitations
- 2022Carbonate Lake Sediments in the Plastics Processing-Preliminary Polylactide Composite Case Study: Mechanical and Structural Propertiescitations
- 2022Influence of Diatomaceous Earth Particle Size on Mechanical Properties of PLA/Diatomaceous Earth Compositescitations
- 2022Novel Multifunctional Spherosilicate-Based Coupling Agents for Improved Bond Strength and Quality in Restorative Dentistrycitations
- 2021Why POSS-Type Compounds Should Be Considered Nanomodifiers, Not Nanofillers—A Polypropylene Blends Case Studycitations
Places of action
Organizations | Location | People |
---|
article
Novel Multifunctional Spherosilicate-Based Coupling Agents for Improved Bond Strength and Quality in Restorative Dentistry
Abstract
<jats:p>The aim of this study was to investigate the restorative connections of composite materials after fracture, under controlled conditions of treating the materials with novel, spherosilicate-based (SS) primers bearing both methacryl (MA) and trimethoxysilyl (TMOS) groups. The chemistry of methacrylate group insertion and reactive groups hydrolysis has been studied with the aid of 1H NMR (Nuclear Magnetic Resonance) spectroscopy. The light-cured resin composites were repaired by activating the connection site with the obtained primers and, for comparison, a silane (methacryloxypropyltrimethoxysilane, MATMOS) as a conventional coupling agent bearing the same reactive groups. The resistance of such a joint was tested in a three-point bending test after 24 h and 28 days period of sample conditioning. The effect of bond application was also studied, showing that spherosilicate-based primers may be used more effectively than MATMOS for two-step (primer-composite) restorative process, while for silane, the three-step process with bond application is crucial for satisfactory joint quality. The joint failure mode was determined by microscopic analysis and it was found that SS-4MA-4TMOS and SS-2MA-6TMOS application resulted in mostly composite, and not joint, failure. After 28 days of conditioning, the flexural strength of the joint repaired with SS-4MA-4TMOS was at 94% of the neat, solid material under the same procedure. However, the strength of the neat composite was observed to decline during the conditioning process by ~30%. The joint behavior was explained on the basis of the gradual hydrolysis effect (the greatest decrease being observed for silane).</jats:p>