People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zielińska, Aleksandra
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Microstructural, corrosion and mechanical properties of a WE43 alloycitations
- 2024Microstructural, corrosion and mechanical properties of a WE43 alloy: conventional extrusion versus SPDcitations
- 2023Microstructure and properties of an AZ61 alloy after extrusion with a forward-backward oscillating die without preheating of the initial billetcitations
- 2023In-depth analysis of the influence of bio-silica filler (Didymosphenia geminata frustules) on the properties of Mg matrix compositescitations
- 2022Heat Treatment of NiTi Alloys Fabricated Using Laser Powder Bed Fusion (LPBF) from Elementally Blended Powderscitations
- 2022Evolution of microstructure dependent corrosion properties of ultrafine AZ31 under conditions of extrusion with a forward backward oscillating diecitations
- 2022The Role of LPSO Structures in Corrosion Resistance of Mg-Y-Zn Alloyscitations
Places of action
Organizations | Location | People |
---|
article
Heat Treatment of NiTi Alloys Fabricated Using Laser Powder Bed Fusion (LPBF) from Elementally Blended Powders
Abstract
<jats:p>The use of elemental metallic powders and in situ alloying in additive manufacturing (AM) is of industrial relevance as it offers the required flexibility to tailor the batch powder composition. This solution has been applied to the AM manufacturing of nickel-titanium (NiTi) shape memory alloy components. In this work, we show that laser powder bed fusion (LPBF) can be used to create a Ni55.7Ti44.3 alloyed component, but that the chemical composition of the build has a large heterogeneity. To solve this problem three different annealing heat treatments were designed, and the resulting porosity, microstructural homogeneity, and phase formation was investigated. The heat treatments were found to improve the alloy’s chemical and phase homogeneity, but the brittle NiTi2 phase was found to be stabilized by the 0.54 wt.% of oxygen present in all fabricated samples. As a consequence, a Ni2Ti4O phase was formed and was confirmed by transmission electron microscopy (TEM) observation. This study showed that pore formation in in situ alloyed NiTi can be controlled via heat treatment. Moreover, we have shown that the two-step heat treatment is a promising method to homogenise the chemical and phase composition of in situ alloyed NiTi powder fabricated by LPBF.</jats:p>