People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pletz, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Comparing crack density and dissipated energy as measures for off-axis damage in composite laminatescitations
- 2022Combined Crack Initiation and Crack Growth Model for Multi-Layer Polymer Materialscitations
- 2022Efficient prediction of crack initiation from arbitrary 2D notchescitations
- 2022Improved concept for iterative crack propagation using configurational forces for targeted angle correctioncitations
- 2022Efficient Finite Element Modeling of Steel Cables in Reinforced Rubbercitations
- 2021CrackDect: Detecting crack densities in images of fiber-reinforced polymerscitations
- 2019Constitutive modeling of anisotropic plasticity with application to fiber-reinforced compositescitations
- 2019Investigation of deformation mechanisms in manganese steel crossings using FE modelscitations
- 2017Permeability Customisation through Preform Manipulation Utilising 3D-Printing Technology
- 2016A finite element model to simulate the physical mechanisms of wear and crack initiation in wheel/rail contactcitations
- 2016Residual lifetime determination of low temperature co-fired ceramics
- 2014Rolling Contact Fatigue of Three Crossing Nose Materials—Multiscale FE Approachcitations
Places of action
Organizations | Location | People |
---|
article
Combined Crack Initiation and Crack Growth Model for Multi-Layer Polymer Materials
Abstract
The current publication deals with the fracture toughness of polymeric multi-layer materials. In detail, the crack initiation and growth, crack arrest, and crack re-initiation of a multi-layer material are examined. The aim is to develop a numerical model for crack initiation and incremental crack growth of a three-layer single edge notched bending specimen that features one brittle layer in a plastically deforming matrix. Crack initiation and crack propagation are modeled using the finite fracture mechanics concept and the energy concept, respectively. No delamination is accounted for and the crack grows in one plane. The experimental observation of a crack initiating in the brittle layer (at 61.4 ± 2.2 N) while the initial crack is blunting can be reproduced well with the numerical model (at 63.6 N) with a difference of <3.6%. The model is ready to be used for different layups to predict toughening mechanisms and damage tolerances in multi-layer materials.