People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pérez, Marta Gil
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024LivMatS Pavilioncitations
- 2024Toward reciprocal feedback between computational design, engineering, and fabrication to co-design coreless filament-wound structurescitations
- 2023Data processing, analysis, and evaluation methods for co-design of coreless filament-wound building systemscitations
- 2023Extension of Computational Co-Design Methods for Modular, Prefabricated Composite Building Components Using Bio-Based Material Systemscitations
- 2023Integrative Structural Design of Nonstandard Building Systemscitations
- 2023Concurrent, computational design and modelling of structural, coreless-wound building componentscitations
- 2022Investigation of the Fabrication Suitability, Structural Performance, and Sustainability of Natural Fibers in Coreless Filament Windingcitations
- 2022Implementation of fiber-optical sensors into coreless filament-wound composite structurescitations
- 2022Integrative structural design of a timber-fibre hybrid building system fabricated through coreless filament windingcitations
- 2022Integrative material and structural design methods for natural fibres filament-wound composite structurescitations
- 2021Structural design assisted by testing for modular coreless filament-wound compositescitations
Places of action
Organizations | Location | People |
---|
article
Investigation of the Fabrication Suitability, Structural Performance, and Sustainability of Natural Fibers in Coreless Filament Winding
Abstract
<p>Coreless filament winding is an emerging fabrication technology in the field of building construction with the potential to significantly decrease construction material consumption, while being fully automatable. Therefore, this technology could offer a solution to the increasing worldwide demand for building floor space in the next decades by optimizing and reducing the material usage. Current research focuses mainly on the design and engineering aspects while using carbon and glass fibers with epoxy resin; however, in order to move towards more sustainable structures, other fiber and resin material systems should also be assessed. This study integrates a selection of potential alternative fibers into the coreless filament winding process by adapting the fabrication equipment and process. A bio-based epoxy resin was introduced and compared to a conventional petroleum-based one. Generic coreless wound components were created for evaluating the fabrication suitability of selected alternative fibers. Four-point bending tests were performed for assessing the structural performance in relation to the sustainability of twelve alternative fibers and two resins. In this study, embodied energy and global warming potential from the literature were used as life-cycle assessment indexes to compare the material systems. Among the investigated fibers, flax showed the highest potential while bio-based resins are advisable at low fiber volume ratios.</p>