Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vasyliv, Bogdan

  • Google
  • 5
  • 6
  • 168

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Effects of Sintering Temperature and Yttria Content on Microstructure, Phase Balance, Fracture Surface Morphology, and Strength of Yttria-Stabilized Zirconia25citations
  • 2022The Effect of Yttria Content on Microstructure, Strength, and Fracture Behavior of Yttria-Stabilized Zirconia63citations
  • 2022The Effect of Sintering Temperature on the Phase Composition, Microstructure, and Mechanical Properties of Yttria-Stabilized Zirconia47citations
  • 2021Synthesis of Functional Surface Layers on Stainless Steels by Laser Alloying33citations
  • 2017On the Behavior of Solid Oxide Fuel Cell Anode Materials in a Hydrogen Sulfide Containing Atmospherecitations

Places of action

Chart of shared publication
Kulyk, Volodymyr
3 / 3 shared
Kostryzhev, Andrii
3 / 14 shared
Duriagina, Zoia
3 / 4 shared
Marenych, Olexandra
2 / 6 shared
Vavrukh, Valentyna
1 / 1 shared
Kovbasiuk, Taras
1 / 2 shared
Chart of publication period
2022
2021
2017

Co-Authors (by relevance)

  • Kulyk, Volodymyr
  • Kostryzhev, Andrii
  • Duriagina, Zoia
  • Marenych, Olexandra
  • Vavrukh, Valentyna
  • Kovbasiuk, Taras
OrganizationsLocationPeople

article

The Effect of Sintering Temperature on the Phase Composition, Microstructure, and Mechanical Properties of Yttria-Stabilized Zirconia

  • Vasyliv, Bogdan
Abstract

<jats:p>It is known that the yttria-stabilized zirconia (YSZ) material has superior thermal, mechanical, and electrical properties. This material is used for manufacturing products and components of air heaters, hydrogen reformers, cracking furnaces, fired heaters, etc. This work is aimed at searching for the optimal sintering mode of YSZ ceramics that provides a high crack growth resistance. Beam specimens of ZrO2 ceramics doped with 6, 7, and 8 mol% Y2O3 (hereinafter: 6YSZ, 7YSZ, and 8YSZ) were prepared using a conventional sintering technique. Four sintering temperatures (1450 °C, 1500 °C, 1550 °C, and 1600 °C) were used for the 6YSZ series and two sintering temperatures (1550 °C and 1600 °C) were used for the 7YSZ and 8YSZ series. The series of sintered specimens were ground and polished to reach a good surface quality. Several mechanical tests of the materials were performed, namely, the microhardness test, fracture toughness test by the indentation method, and single-edge notch beam (SENB) test under three-point bending. Based on XRD analysis, the phase balance (percentages of tetragonal, cubic, and monoclinic ZrO2 phases) of each composition was substantiated. The morphology of the fracture surfaces of specimens after both the fracture toughness tests was studied in relation to the mechanical behavior of the specimens and the microstructure of corresponding materials. SEM-EDX analysis was used for microstructural characterization. It was found that both the yttria percentage and sintering temperature affect the mechanical behavior of the ceramics. Optimal chemical composition and sintering temperature were determined for the studied series of ceramics. The maximum transformation toughening effect was revealed for ZrO2-6 mol% Y2O3 ceramics during indentation. However, in the case of a SENB test, the maximum transformation toughening effect in the crack tip vicinity was found in ZrO2-7 mol% Y2O3 ceramics. The conditions for obtaining YSZ ceramics with high fracture toughness are discussed.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • morphology
  • surface
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • crack
  • Hydrogen
  • chemical composition
  • Energy-dispersive X-ray spectroscopy
  • ceramic
  • fracture toughness
  • sintering