Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Szewczyk, Daria

  • Google
  • 5
  • 35
  • 94

Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Mixology of MA1- xEAxPbI3Hybrid Perovskites26citations
  • 2022Low Temperature Thermal Properties of Nanodiamond Ceramics4citations
  • 2022Effect of Graphene Addition on the Thermal and Persistent Luminescence Properties of Gd2.994Ce0.006Ga3Al2O12 and Gd2.964Ce0.006Dy0.03Ga3Al2O12 Ceramics1citations
  • 2020Suppression of phase transitions and glass phase signatures in mixed cation halide perovskites63citations
  • 2016Thermal properties of Ti-doped Cu–Zn soft ferrites used as thermally actuated material for magnetizing superconductorscitations

Places of action

Chart of shared publication
Ptak, Maciej
1 / 4 shared
Sieradzki, Adam
2 / 10 shared
Gągor, Anna
1 / 2 shared
Mączka, Mirosław
1 / 5 shared
Nas, Sergejus Balčiū
1 / 1 shared
Kalendra, Vidmantas
2 / 8 shared
Grigalaitis, Robertas
2 / 16 shared
Banys, Jū Ras
1 / 2 shared
Svirskas, Šarū Nas
1 / 1 shared
Kudrawiec, Robert
1 / 8 shared
Klimavicius, Vytautas
1 / 1 shared
Pieniążek, Agnieszka
1 / 1 shared
Šimėnas, Mantas
1 / 2 shared
Herman, Artur P.
1 / 1 shared
Walsh, Aron
2 / 79 shared
Tolborg, Kasper
1 / 6 shared
Kinka, Martynas
2 / 5 shared
Ramos, Miguel Angel
1 / 2 shared
Balciunas, Sergejus
1 / 2 shared
Garbaras, Andrius
1 / 1 shared
Maczka, Miroslaw
1 / 5 shared
Gagor, Anna
1 / 4 shared
Banys, Juras
1 / 41 shared
Svirskas, Sarunas
1 / 3 shared
Wilson, Jn
1 / 3 shared
Samulionis, Vytautas
1 / 3 shared
Simenas, Mantas
1 / 1 shared
Stachowiak, Piotr
1 / 1 shared
Fagnard, Jf
1 / 1 shared
Zhai, Y.
1 / 2 shared
Coombs, Ta
1 / 1 shared
Mucha, Jan
1 / 2 shared
Philippe, Mp
1 / 1 shared
Vanderbemden, Philippe
1 / 27 shared
Hsu, Ch
1 / 1 shared
Chart of publication period
2022
2020
2016

Co-Authors (by relevance)

  • Ptak, Maciej
  • Sieradzki, Adam
  • Gągor, Anna
  • Mączka, Mirosław
  • Nas, Sergejus Balčiū
  • Kalendra, Vidmantas
  • Grigalaitis, Robertas
  • Banys, Jū Ras
  • Svirskas, Šarū Nas
  • Kudrawiec, Robert
  • Klimavicius, Vytautas
  • Pieniążek, Agnieszka
  • Šimėnas, Mantas
  • Herman, Artur P.
  • Walsh, Aron
  • Tolborg, Kasper
  • Kinka, Martynas
  • Ramos, Miguel Angel
  • Balciunas, Sergejus
  • Garbaras, Andrius
  • Maczka, Miroslaw
  • Gagor, Anna
  • Banys, Juras
  • Svirskas, Sarunas
  • Wilson, Jn
  • Samulionis, Vytautas
  • Simenas, Mantas
  • Stachowiak, Piotr
  • Fagnard, Jf
  • Zhai, Y.
  • Coombs, Ta
  • Mucha, Jan
  • Philippe, Mp
  • Vanderbemden, Philippe
  • Hsu, Ch
OrganizationsLocationPeople

article

Effect of Graphene Addition on the Thermal and Persistent Luminescence Properties of Gd2.994Ce0.006Ga3Al2O12 and Gd2.964Ce0.006Dy0.03Ga3Al2O12 Ceramics

  • Szewczyk, Daria
Abstract

<jats:p>The gadolinium, gallium, aluminum garnet doped with cerium and co-doped with dysprosium ions were prepared using sol gel method. The SEM images show that after synthesis, the grains are below 100 nm. The powders were ultrasonically mixed with graphene nanoflakes and ceramics were prepared using the high pressure low temperature sintering technique. A series of the ceramics was prepared using different graphene content. The structure of the samples was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman techniques. The spectroscopic properties were checked using conventional and persistent luminescence spectra measurements. The thermoluminescence glow curves and fading time of persistent luminescence measurements were performed to check how the graphene presence affects the electron traps number and depth. It was found that the addition of graphene improved the thermal conductivity of co-doped samples. This resulted in faster release of deeper traps and an increase in fading of persistent luminescence. The possibility of releasing energy from deep traps without additional stimulation may allow the use in different applications, the matrices and luminescent ions, which so far did not show persistent luminescence at room temperature.</jats:p>

Topics
  • grain
  • scanning electron microscopy
  • x-ray diffraction
  • aluminium
  • ceramic
  • thermal conductivity
  • Gadolinium
  • sintering
  • Gallium
  • Cerium
  • luminescence
  • thermoluminescence
  • Dysprosium