People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wencka, Magdalena
Institute of Molecular Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Crystal Structure and Ferromagnetism of the CeFe₉Si₄ Intermetallic Compoundcitations
- 2022Zero-Magnetostriction Magnetically Soft High-Entropy Alloys in the AlCoFeNiCux (x = 0.6–3.0) System for Supersilent Applicationscitations
- 2022The Effect of Scandium on the Structure, Microstructure and Superconductivity of Equimolar Sc-Hf-Nb-Ta-Ti-Zr Refractory High-Entropy Alloyscitations
- 2022Structure and superconductivity of tin-containing HfTiZrSnM (M = Cu, Fe, Nb, Ni) medium-entropy and high-entropy alloyscitations
- 2022The effect of scandium on the structure, microstructure and superconductivity of equimolar Sc-Hf-Nb-Ta-Ti-Zr refractory high-entropy alloyscitations
- 2022Electronic transport properties of the Al0.5TiZrPdCuNi alloy in the high-entropy alloy and metallic glass formscitations
- 2021Structure and Superconductivity of Tin-Containing HfTiZrSnM (M = Cu, Fe, Nb, Ni) Medium-Entropy and High-Entropy Alloyscitations
- 2018The effect of surface oxidation on the catalytic properties of Ga3Ni2 intermetallic compound for carbon dioxide reductioncitations
- 2017Nanoscale Effects of Radiation (UV, X-ray, and γ) on Calcite Surfaces: Implications for its Mechanical and Physico-Chemical Propertiescitations
- 2014Synthesis and Magnetic Properties of Hematite Particles in a “Nanomedusa” Morphologycitations
Places of action
Organizations | Location | People |
---|
article
The Effect of Scandium on the Structure, Microstructure and Superconductivity of Equimolar Sc-Hf-Nb-Ta-Ti-Zr Refractory High-Entropy Alloys
Abstract
<jats:p>In this study, we investigate the scandium-containing Sc-Hf-Nb-Ta-Ti-Zr system of refractory high-entropy alloys (HEAs). Using the arc-melting method, we synthesized nine equimolar alloys (five 4-, three 5- and one 6-component), with all of them containing Sc. The alloys were characterized by XRD, electron microscopy and EDS, while superconductivity was investigated via electrical resistivity, specific heat and the Meissner effect. The results were compared to the parent Hf-Nb-Ta-Ti-Zr refractory HEAs, forming a single-phase body-centered cubic (bcc) structure and quite homogeneous microstructure. The addition of Sc produces a two-phase structure in the Sc-Hf-Nb-Ta-Ti-Zr alloys, with one phase being bcc and the other hexagonal close-packed (hcp). The hcp phase absorbs practically all Sc, whereas the Sc-poor bcc phase is identical to the bcc phase in the Hf-Nb-Ta-Ti-Zr parent system. Upon the Sc addition, the microstructure becomes very inhomogeneous. Large bcc dendrites (10–100 µm) are homogeneous in the central parts, but become a fine dispersion of sub-micron precipitates of the bcc and hcp phases close to the edges. The interdendritic regions are also a fine dispersion of the two phases. Superconductivity of the Sc-Hf-Nb-Ta-Ti-Zr alloys originates from the bcc phase fraction, which demonstrates identical superconducting parameters as the bcc Hf-Nb-Ta-Ti-Zr parent alloys, while the Sc-containing hcp phase fraction is non-superconducting.</jats:p>