People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcgarrigle, Cormac
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Influence of extrusion parameters on filled polyphenylsulfone tufting yarns on open-hole tensile strengthcitations
- 2022Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractionscitations
- 2022Elastic Modulus and Flatwise (Through-Thickness) Tensile Strength of Continuous Carbon Fibre Reinforced 3D Printed Polymer Compositescitations
- 2021Comparison of Properties and Bead Geometry in MIG and CMT Single Layer Samples for WAAM Applicationscitations
- 2021Influence of Binder Float Length on the Out-of-Plane and Axial Impact Performance of 3D Woven Compositescitations
- 2021Thread-stripping test procedures leading to factors of safety data for friction-drilled holes in thin-section aluminium alloycitations
- 2020Improved crush energy absorption in 3D woven composites by pick density modificationcitations
- 2019Influence of Textile Architecture on the Mechanical Properties of 3D Woven Carbon Composites
- 2019Comparative studies of structure property relationship between glass/epoxy and carbon/epoxy 3D woven composites
- 2019Energy Absorption Mechanisms in Layer-to-Layer 3D Woven Composites
- 2019Improved Energy Absorption in 3D Woven Composites by Weave Parameter Manipulationcitations
Places of action
Organizations | Location | People |
---|
article
Elastic Modulus and Flatwise (Through-Thickness) Tensile Strength of Continuous Carbon Fibre Reinforced 3D Printed Polymer Composites
Abstract
<jats:p>Additively manufactured composite specimens exhibit anisotropic properties, meaning that the elastic response changes with respect to orientation. Both in-plane and out-of-plane mechanical properties are important for designing purpose. Recent studies have characterised the in-plane performance. In this study, however, through-thickness tensile strength of 3D polymer composites were determined by printing of continuous carbon fibre reinforced thermoplastic polyamide-based composite, manufactured using a Markforged Two 3D printer. This paper discusses sample fabrication and geometry, adhesive used, and testing procedure. Test standards used to determine out-of-plane properties are tedious as most of the premature failures occur between the specimens and the tabs. Two types of samples were printed according to ASTM flatwise tension standard and the results were compared to determine the geometry effect on the interlaminar strength. This test method consists of subjecting the printed sample to a uniaxial tensile force normal to the plane. With this method, the acceptable failure modes for tensile strength must be internal to the structure, not between the sample and the end tabs. Micro-computed tomography (µCT) was carried out to observe the porosity. Surface behaviour was studied using scanning electron microscopy (SEM) to see the voids and the distribution of the fibres in the samples. The results showed consistent values for tensile strength and elastic modulus for Araldite glue after initial trials (with some other adhesives) to determine a suitable choice of adhesive for bonding the samples with the tabs. Circular specimens have higher tensile strength and elastic modulus as compared to rectangular specimens.</jats:p>