People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Waele, Wim De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Neural network based fatigue lifetime prediction of metals subjected to block loadingcitations
- 2023Stress intensity factor calculation for short cracks initiating from a semi-ellipsoidal pit
- 2023Quantitative analysis of the correlation between geometric parameters of pits and stress concentration factors for a plate subject to uniaxial tensile stresscitations
- 2023Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack modelcitations
- 2023Smart S-N curve for fatigue lifetime predictions of offshore wind turbine support structures affected by corrosion
- 2023Evaluation of the corrosion pit growth rate in structural steel S355 by phase-field modelling
- 2023Durability of an adhesively bonded joint between steel ship hull and sandwich superstructure pre-exposed to saline environment
- 2022Numerical study on the effect of pitting corrosion on the fatigue strength degradation of offshore wind turbine substructures using a short crack model
- 2022A numerical investigation on the pitting corrosion in offshore wind turbine substructures
- 2022Calibration and validation of extended back-face strain compliance for a wide range of crack lengths in SENB-4P specimenscitations
- 2022Effects of fixture configurations and weld strength mismatch on J-integral calculation procedure for SE(B) specimenscitations
- 2022Development and evaluation of the ultrasonic welding process for copper-aluminium dissimilar weldingcitations
- 2022Fatigue strength degradation of structural steel in sea environment due to pitting corrosion
- 2022Pitting corrosion and its transition to crack in offshore wind turbine supporting structures
- 2022Pitting Corrosion and Its Transition to Crack in Offshore Wind Turbine Supporting Structures
- 2022Test methods for corrosion-fatigue of offshore structures
- 2021Experimental and numerical study of a piezoelectric diaphragm, a smart sensor for electromechanical impedance-based structural health monitoring
- 2021Electrical admittance of a circular piezoelectric transducer and chargeless deformation effectcitations
- 2021An interdisciplinary framework to predict premature roller element bearing failures in wind turbine gearboxescitations
- 2021Fully-coupled continuum damage model for simulation of plasticity dominated hydrogen embrittlement mechanismscitations
- 2020Calibrating a ductile damage model for two pipeline steels : method and challengescitations
- 2020Evaluation of fatigue crack propagation in steel ESET specimens subjected to variable load spectracitations
- 2020Fatigue crack growth model incorporating surface waviness for Wire+Arc additively manufactured componentscitations
- 2020A comprehensive study on the microstructure and mechanical properties of arc girth welded joints of spiral welded high strength API X70 steel pipecitations
- 2019Enabling qualification of hybrid structures for lightweight and safe maritime transport
- 2019Fatigue crack propagation in HSLA steel specimens subjected to unordered and ordered load spectra
- 2019Crack tip constraint analysis in welded joints with pronounced strength and toughness heterogeneitycitations
- 2019Weldability of high-strength aluminium alloy EN AW-7475-T761 sheets for aerospace applications, using refill friction stir spot weldingcitations
- 2019Assessment of ultra-high cycle fatigue behavior of EN-GJL-250 cast iron using ultrasonic fatigue testing machine
- 2017Metallographic evaluation of the weldability of high strength aluminium alloys using friction spot welding
Places of action
Organizations | Location | People |
---|
article
Effects of fixture configurations and weld strength mismatch on J-integral calculation procedure for SE(B) specimens
Abstract
This work presents the development of a J-integral estimation procedure for deep and shallow cracked bend specimens based upon plastic ηpl factors for a butt weld made in an S690 QL high strength low alloyed steel. Experimental procedures include the characterization of average material properties by tensile testing and evaluation of base and weld metal resistance to stable tearing by fracture testing of square SE(B) specimens containing a weld centerline notch. J-integral has been estimated from plastic work using a single specimen approach and the normalization data reduction technique. A comprehensive parametric finite element study has been conducted to calibrate plastic factor ηpl and geometry factor λ for various fixture and weld configurations, while a corresponding plastic factor γpl was computed on the basis of the former two. The modified ηpl and γpl factors were then incorporated in the J computation procedure given by the ASTM E1820 standard, for evaluation of the plastic component of J and its corresponding correction due to crack growth, respectively. Two kinds of J-R curves were computed on the basis of modified and standard ηpl and γpl factors, where the latter are given by ASTM E1820. A comparison of produced J-R curves for the base material revealed that variations in specimen fixtures can lead to ≈ 10% overestimation of computed fracture toughness JIc. Furthermore, a comparison of J-R curves for overmatched single-material idealized welds revealed that the application of standard ηpl and γpl factors can lead to the overestimation of computed fracture toughness JIc by more than 10%. Similar observations are made for undermatched single material idealized welds, where fracture toughness JIc is overestimatedby ≈ 5%.