People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fíla, Tomáš
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Ageing effects on the mechanical properties stability of 3D printed material under compression
- 2023Response of the ultra high performance concrete under dynamic compressive loadingcitations
- 2023Effect of aging on mechanical properties of 3D printed samples using stereolitography
- 2022Strain Rate-Dependent Compressive Properties of Bulk Cylindrical 3D-Printed Samples from 316L Stainless Steelcitations
- 2021Hybrid Auxetic Structures: Structural Optimization and Mechanical Characterization
- 2020Dynamic Deformation Behaviour of Chiral Auxetic Lattices at Low and High Strain-Ratescitations
- 2019Strain Dependency of Poisson's Ratio of SLS Printed Auxetic Lattices Subjected to Quasi‐Static and Dynamic Compressive Loadingcitations
- 2019STRAIN-RATE AND PRINTING DIRECTION DEPENDENCY OF COMPRESSIVE BEHAVIOUR OF 3D PRINTED STAINLESS STEEL 316Lcitations
- 2019COMPRESSIVE PROPERTIES OF AUXETIC STRUCTURES WITH CONTROLLED STIFFNESS OF STRUT JOINTScitations
- 2018Testing of Auxetic Materials Using Hopkinson Bar and Digital Image Correlationcitations
- 2018IMPACT TESTING OF ORDNANCE GELATINE UNDER MODERATE STRAIN RATE CONDITIONS
Places of action
Organizations | Location | People |
---|
article
Strain Rate-Dependent Compressive Properties of Bulk Cylindrical 3D-Printed Samples from 316L Stainless Steel
Abstract
<jats:p>The main aim of the study was to analyse the strain rate sensitivity of the compressive deformation response in bulk 3D-printed samples from 316L stainless steel according to the printing orientation. The laser powder bed fusion (LPBF) method of metal additive manufacturing was utilised for the production of the samples with three different printing orientations: 0∘, 45∘, and 90∘. The specimens were experimentally investigated during uni-axial quasi-static and dynamic loading. A split Hopkinson pressure bar (SHPB) apparatus was used for the dynamic experiments. The experiments were observed using a high-resolution (quasi-static loading) or a high-speed visible-light camera and a high-speed thermographic camera (dynamic loading) to allow for the quantitative and qualitative analysis of the deformation processes. Digital image correlation (DIC) software was used for the evaluation of displacement fields. To assess the deformation behaviour of the 3D-printed bulk samples and strain rate related properties, an analysis of the true stress–true strain diagrams from quasi-static and dynamic experiments as well as the thermograms captured during the dynamic loading was performed. The results revealed a strong strain rate effect on the mechanical response of the investigated material. Furthermore, a dependency of the strain-rate sensitivity on the printing orientation was identified.</jats:p>