People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rittinghaus, Silja-Katharina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Changes in the morphology and chemistry of an oxidation-sensitive beta-Ti alloy powder during the processing steps of additive manufacturing
- 2023Intrinsic Heat Treatment of an Additively Manufactured Medium Entropy AlCrFe2Ni2-Alloycitations
- 2023Towards enhancing ODS composites in laser powder bed fusion: Investigating the incorporation of laser-generated zirconia nanoparticles in a model iron–chromium alloycitations
- 2022Evolution of Surface Topography and Microstructure in Laser Polishing of Cold Work Steel 1.2379 (AISI D2) Using Quadratic, Top-Hat Shaped Intensity Distributionscitations
- 2022Evolution of Surface Topography and Microstructure in Laser Polishing of Cold Work Steel 1.2379 (AISI D2) Using Quadratic, Top-Hat Shaped Intensity Distributionscitations
- 2022Laser Fusion of Powder and Foil - a Multi Material Approach to Additive Manufacturingcitations
- 2022High Temperature Oxidation Performance of an Additively Manufactured Mo-9Si-8B Alloycitations
- 2022Laser Additive Manufacturing of Iron-Aluminum for Hybrid Steam Turbine Blades
- 2022Laser Additive Manufacturing of Iron-Aluminum for Hybrid Steam Turbine Blades
- 2021Strengthening of additively manufactured Me-Si-B (Me = Mo, V) by Y2O3 particlescitations
- 2021Laser Micro Polishing of Tool Steel 1.2379 (AISI D2): Influence of Intensity Distribution, Laser Beam Size, and Fluence on Surface Roughness and Area Ratecitations
- 2021Laser Micro Polishing of Tool Steel 1.2379 (AISI D2): Influence of Intensity Distribution, Laser Beam Size, and Fluence on Surface Roughness and Area Ratecitations
- 2021High Temperature Oxidation Performance of an Additively Manufactured Mo–9Si–8B Alloycitations
- 2021Structure-property-process parameters correlation of laser additive manufactured TiC dispersed titanium aluminide (Ti45Al5Nb0.5Si) compositecitations
- 2021Influence of Process Conditions on the Local Solidification and Microstructure During Laser Metal Deposition of an Intermetallic TiAl Alloy (GE4822)citations
- 2021Influence of Process Conditions on the Local Solidification and Microstructure During Laser Metal Deposition of an Intermetallic TiAl Alloy (GE4822)citations
- 2020Laserauftragschweissen von ɣ-Titanaluminiden als Verfahren der Additiven Fertigung ; Additive manufacturing of γ-titanium aluminides with laser metal deposition
- 2020Recent advances in additive manufacturing of Mo-Si-B alloys – A status report on the cooperative project LextrA -citations
- 2020Laser based manufacturing of titanium aluminidescitations
- 2019Microstructural Evolution and Microhardness of Direct Laser Clad TiC Dispersed Titanium Aluminide (Ti45Al5Nb0.5Si) Alloycitations
- 2019Laser Additive Manufacturing of Titanium Aluminides for Turbomachinery Applicationscitations
- 2019Oxygen gain and aluminum loss during laser metal deposition of intermetallic TiAlcitations
Places of action
Organizations | Location | People |
---|
article
Evolution of Surface Topography and Microstructure in Laser Polishing of Cold Work Steel 1.2379 (AISI D2) Using Quadratic, Top-Hat Shaped Intensity Distributions
Abstract
<jats:p>Within the scope of this study, basic experimental research was carried out on macro-laser polishing of tool steel 1.2379 (D2) using a square intensity distribution and continuous wave laser radiation. The influence of the individual process parameters on surface topography was analyzed by a systematic investigation of a wide range of process parameters for two different, square laser beam diameters. Contrary to a typical laser polishing approach, it was shown that short interaction times (high scanning velocity and small laser beam dimensions) are required to reduce both micro-roughness and meso-roughness. A significant reduction of surface roughness of approx. 46% was achieved from Raini = 0.33 ± 0.026 µm to Ramin = 0.163 ± 0.018 µm using a focused square laser beam with an edge length of dL,E = 100 µm at a scanning velocity of vscan = 200 mm/s, a laser power PL = 60 W and n = 2 passes. However, characteristic surface features occur during laser polishing and are a direct consequence of the laser polishing process. Martensite needles in the micro-roughness region, undercuts in the meso-roughness region, and surface waviness in the macro-roughness region can dominate different regions of the resulting surface roughness spectrum. In terms of mechanical properties, average surface hardness was determined by hundreds of nano-indentation measurements and was approx. 390 ± 21 HV0.1 and particularly homogeneous over the whole laser polished surface.</jats:p>