Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zimowska, Małgorzata

  • Google
  • 5
  • 29
  • 54

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Improvement of La0.8Sr0.2MnO3−δ Cathode Material for Solid Oxide Fuel Cells by Addition of YFe0.5Co0.5O39citations
  • 2022N-doped carbon materials produced by CVD with the compounds derived from LDHs4citations
  • 2021Active Double-Layered Films Enriched with AgNPs in Great Water Dock Root and Pu-Erh Extracts13citations
  • 2020Dual Pore Cathode Materials for Solid Oxide Fuel Cellscitations
  • 2019Novel bioresorbable tricalcium phosphate/polyhydroxyoctanoate (TCP/PHO) composites as scaffolds for bone tissue engineering applications28citations

Places of action

Chart of shared publication
Górski, Miłosz
1 / 1 shared
Krzan, Marcel
2 / 11 shared
Komenda, Anna
1 / 1 shared
Kharytonau, Dzmitry S.
1 / 4 shared
Mosiałek, Michał
1 / 5 shared
Drelinkiewicz, Alicja
1 / 1 shared
Pietrzyk, Piotr
1 / 1 shared
Ruggiero-Mikołajczyk, Małgorzata
1 / 2 shared
Socha, Robert P.
1 / 3 shared
Pacuła, Aleksandra
1 / 1 shared
Nattich-Rak, Małgorzata
1 / 1 shared
Duraczyńska, Dorota
1 / 3 shared
Bielańska, Elżbieta
1 / 1 shared
Kopel, Pavel
1 / 5 shared
Cabaj, Agnieszka
1 / 1 shared
Cholewa-Wojcik, Agnieszka
1 / 1 shared
Juszczak, Lesław
1 / 3 shared
Tkaczewska, Joanna
1 / 4 shared
Krzyściak, Paweł
1 / 3 shared
Wróbel, Andrzej
1 / 4 shared
Skibiński, Szymon
1 / 2 shared
Witko, Małgorzata
1 / 2 shared
Witko, Tomasz
1 / 1 shared
Guzik, Maciej
1 / 2 shared
Haraźna, Katarzyna
1 / 1 shared
Zima, Aneta
1 / 3 shared
Leszczyński, Bartosz
1 / 3 shared
Cichoń, Ewelina
1 / 2 shared
Ślósarczyk, Anna
1 / 1 shared
Chart of publication period
2022
2021
2020
2019

Co-Authors (by relevance)

  • Górski, Miłosz
  • Krzan, Marcel
  • Komenda, Anna
  • Kharytonau, Dzmitry S.
  • Mosiałek, Michał
  • Drelinkiewicz, Alicja
  • Pietrzyk, Piotr
  • Ruggiero-Mikołajczyk, Małgorzata
  • Socha, Robert P.
  • Pacuła, Aleksandra
  • Nattich-Rak, Małgorzata
  • Duraczyńska, Dorota
  • Bielańska, Elżbieta
  • Kopel, Pavel
  • Cabaj, Agnieszka
  • Cholewa-Wojcik, Agnieszka
  • Juszczak, Lesław
  • Tkaczewska, Joanna
  • Krzyściak, Paweł
  • Wróbel, Andrzej
  • Skibiński, Szymon
  • Witko, Małgorzata
  • Witko, Tomasz
  • Guzik, Maciej
  • Haraźna, Katarzyna
  • Zima, Aneta
  • Leszczyński, Bartosz
  • Cichoń, Ewelina
  • Ślósarczyk, Anna
OrganizationsLocationPeople

article

Improvement of La0.8Sr0.2MnO3−δ Cathode Material for Solid Oxide Fuel Cells by Addition of YFe0.5Co0.5O3

  • Górski, Miłosz
  • Krzan, Marcel
  • Komenda, Anna
  • Kharytonau, Dzmitry S.
  • Zimowska, Małgorzata
  • Mosiałek, Michał
Abstract

<jats:p>The high efficiency of solid oxide fuel cells with La0.8Sr0.2MnO3−δ (LSM) cathodes working in the range of 800–1000 °C, rapidly decreases below 800 °C. The goal of this study is to improve the properties of LSM cathodes working in the range of 500–800 °C by the addition of YFe0.5Co0.5O3 (YFC). Monophasic YFC is synthesized and sintered at 950 °C. Composite cathodes are prepared on Ce0.8Sm0.2O1.9 electrolyte disks using pastes containing YFC and LSM powders mixed in 0:1, 1:19, and 1:1 weight ratios denoted LSM, LSM1, and LSM1, respectively. X-ray diffraction patterns of tested composites reveal the presence of pure perovskite phases in samples sintered at 950 °C and the presence of Sr4Fe4O11, YMnO3, and La0.775Sr0.225MnO3.047 phases in samples sintered at 1100 °C. Electrochemical impedance spectroscopy reveals that polarization resistance increases from LSM1, by LSM, to LSM2. Differences in polarization resistance increase with decreasing operating temperatures because activation energy rises in the same order and equals to 1.33, 1.34, and 1.58 eV for LSM1, LSM, and LSM2, respectively. The lower polarization resistance of LSM1 electrodes is caused by the lower resistance associated with the charge transfer process.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • phase
  • x-ray diffraction
  • composite
  • activation