Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mosiałek, Michał

  • Google
  • 5
  • 26
  • 92

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Boosting the electrochemical performance of oxygen electrodes via the formation of LSCF-BaCe 0.9–x Mo x Y 0.1 O 3–δ triple conducting composite for solid oxide fuel cells:Part II22citations
  • 2024Boosting the electrochemical performance of oxygen electrodes via the formation of LSCF-BaCe0.9–xMoxY0.1O3–δ triple conducting composite for solid oxide fuel cells22citations
  • 2023Synthesis of Yb and Sc stabilized zirconia electrolyte (Yb0.12Sc0.08Zr0.8O2–δ) for intermediate temperature SOFCs: Microstructural and electrical properties27citations
  • 2022Improvement of La0.8Sr0.2MnO3−δ Cathode Material for Solid Oxide Fuel Cells by Addition of YFe0.5Co0.5O39citations
  • 2016Ba0.5Sr0.5Co0.8Fe0.2O3–δ–La0.6Sr0.4Co0.8Fe0.2O3–δ Composite Cathode for Solid Oxide Fuel Cell12citations

Places of action

Chart of shared publication
Łasocha, Wiesław
2 / 5 shared
Tayyab, Zuhra
2 / 9 shared
Rauf, Sajid
2 / 18 shared
Li, Cheng Xin
2 / 2 shared
Hanif, Muhammad Bilal
3 / 7 shared
Roch, Tomas
2 / 3 shared
Baker, Richard T.
2 / 14 shared
Madej, Dominika
2 / 2 shared
Sultan, Amir
2 / 3 shared
Makarov, Hryhorii
2 / 2 shared
Motola, Martin
3 / 7 shared
Zheng, Kun
2 / 3 shared
Orliukas, Antanas Feliksas
1 / 1 shared
Socha, Robert
1 / 4 shared
Šalkus, Tomas
1 / 6 shared
Dziubaniuk, Małgorzata
1 / 1 shared
Wyrwa, Jan
1 / 1 shared
Gregor, Maros
1 / 1 shared
Kazakevicius, Edvardas
1 / 3 shared
Lasocha, Wieslaw
1 / 3 shared
Kežionis, Algimantas
1 / 5 shared
Górski, Miłosz
1 / 1 shared
Krzan, Marcel
1 / 11 shared
Komenda, Anna
1 / 1 shared
Kharytonau, Dzmitry S.
1 / 4 shared
Zimowska, Małgorzata
1 / 5 shared
Chart of publication period
2024
2023
2022
2016

Co-Authors (by relevance)

  • Łasocha, Wiesław
  • Tayyab, Zuhra
  • Rauf, Sajid
  • Li, Cheng Xin
  • Hanif, Muhammad Bilal
  • Roch, Tomas
  • Baker, Richard T.
  • Madej, Dominika
  • Sultan, Amir
  • Makarov, Hryhorii
  • Motola, Martin
  • Zheng, Kun
  • Orliukas, Antanas Feliksas
  • Socha, Robert
  • Šalkus, Tomas
  • Dziubaniuk, Małgorzata
  • Wyrwa, Jan
  • Gregor, Maros
  • Kazakevicius, Edvardas
  • Lasocha, Wieslaw
  • Kežionis, Algimantas
  • Górski, Miłosz
  • Krzan, Marcel
  • Komenda, Anna
  • Kharytonau, Dzmitry S.
  • Zimowska, Małgorzata
OrganizationsLocationPeople

article

Improvement of La0.8Sr0.2MnO3−δ Cathode Material for Solid Oxide Fuel Cells by Addition of YFe0.5Co0.5O3

  • Górski, Miłosz
  • Krzan, Marcel
  • Komenda, Anna
  • Kharytonau, Dzmitry S.
  • Zimowska, Małgorzata
  • Mosiałek, Michał
Abstract

<jats:p>The high efficiency of solid oxide fuel cells with La0.8Sr0.2MnO3−δ (LSM) cathodes working in the range of 800–1000 °C, rapidly decreases below 800 °C. The goal of this study is to improve the properties of LSM cathodes working in the range of 500–800 °C by the addition of YFe0.5Co0.5O3 (YFC). Monophasic YFC is synthesized and sintered at 950 °C. Composite cathodes are prepared on Ce0.8Sm0.2O1.9 electrolyte disks using pastes containing YFC and LSM powders mixed in 0:1, 1:19, and 1:1 weight ratios denoted LSM, LSM1, and LSM1, respectively. X-ray diffraction patterns of tested composites reveal the presence of pure perovskite phases in samples sintered at 950 °C and the presence of Sr4Fe4O11, YMnO3, and La0.775Sr0.225MnO3.047 phases in samples sintered at 1100 °C. Electrochemical impedance spectroscopy reveals that polarization resistance increases from LSM1, by LSM, to LSM2. Differences in polarization resistance increase with decreasing operating temperatures because activation energy rises in the same order and equals to 1.33, 1.34, and 1.58 eV for LSM1, LSM, and LSM2, respectively. The lower polarization resistance of LSM1 electrodes is caused by the lower resistance associated with the charge transfer process.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • phase
  • x-ray diffraction
  • composite
  • activation