Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grellmann, Henriette

  • Google
  • 3
  • 19
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Integrated Temperature and Position Sensors in a Shape-Memory Driven Soft Actuator for Closed-Loop Control9citations
  • 2022Experimental and Numerical Analysis of the Deformation Behavior of Adaptive Fiber-Rubber Composites with Integrated Shape Memory Alloys18citations
  • 2021Fundamentals and working mechanisms of artificial muscles with textile application in the loop12citations

Places of action

Chart of shared publication
Bruns, Mathis
1 / 3 shared
Cuaran, Carlos Alberto Gomez
1 / 1 shared
Cherif, Chokri
3 / 112 shared
Röbenack, Klaus
1 / 7 shared
Nocke, Andreas
2 / 34 shared
Mersch, Johannes
1 / 9 shared
Keshtkar, Najmeh
1 / 2 shared
Gerlach, Gerald
1 / 12 shared
Ashir, Moniruddoza
1 / 1 shared
Gereke, Thomas
1 / 14 shared
Kopelmann, Karl
1 / 2 shared
Sennewald, Cornelia
1 / 10 shared
Lohse, Felix
1 / 2 shared
Häntzsche, Eric Martin
1 / 23 shared
Winger, Hans
1 / 3 shared
Wießner, Sven
1 / 16 shared
Hickmann, Rico
1 / 5 shared
Kamble, Vikram G.
1 / 4 shared
Lohse, Felix M.
1 / 1 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Bruns, Mathis
  • Cuaran, Carlos Alberto Gomez
  • Cherif, Chokri
  • Röbenack, Klaus
  • Nocke, Andreas
  • Mersch, Johannes
  • Keshtkar, Najmeh
  • Gerlach, Gerald
  • Ashir, Moniruddoza
  • Gereke, Thomas
  • Kopelmann, Karl
  • Sennewald, Cornelia
  • Lohse, Felix
  • Häntzsche, Eric Martin
  • Winger, Hans
  • Wießner, Sven
  • Hickmann, Rico
  • Kamble, Vikram G.
  • Lohse, Felix M.
OrganizationsLocationPeople

article

Experimental and Numerical Analysis of the Deformation Behavior of Adaptive Fiber-Rubber Composites with Integrated Shape Memory Alloys

  • Ashir, Moniruddoza
  • Gereke, Thomas
  • Cherif, Chokri
  • Kopelmann, Karl
  • Sennewald, Cornelia
  • Lohse, Felix
  • Häntzsche, Eric Martin
  • Grellmann, Henriette
Abstract

<p>Fiber-reinforced rubber composites with integrated shape memory alloy (SMA) actuator wires present a promising approach for the creation of soft and highly elastic structures with adaptive functionalities for usage in aerospace, robotic, or biomedical applications. In this work, the flat-knitting technology is used to develop glass-fiber-reinforced fabrics with tailored properties designed for active bending deformations. During the knitting process, the SMA wires are integrated into the textile and positioned with respect to their actuation task. Then, the fabrics are infiltrated with liquid silicone, thus creating actively deformable composites. For dimensioning such structures, a comprehensive understanding of the interactions of all components is required. Therefore, a simulation model is developed that captures the properties of the rubber matrix, fiber reinforcement, and the SMA actuators and that is capable of simulating the active bending deformations of the specimens. After model calibration with experimental four-point-bending data, the SMA-driven bending deformation is simulated. The model is validated with activation experiments of the actively deformable specimens. The simulation results show good agreement with the experimental tests, thus enabling further investigations into the deformation mechanisms of actively deformable fiber-reinforced rubbers.</p>

Topics
  • impedance spectroscopy
  • experiment
  • simulation
  • glass
  • glass
  • composite
  • activation
  • deformation mechanism
  • wire
  • rubber