Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ioniță, Iulian

  • Google
  • 1
  • 9
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022In-Vitro Analysis of FeMn-Si Smart Biodegradable Alloy15citations

Places of action

Chart of shared publication
Munteanu, Corneliu
1 / 5 shared
Lohan, Nicoleta Monica
1 / 4 shared
Zegan, Georgeta
1 / 8 shared
Cimpoeșu, Nicanor
1 / 8 shared
Ioanid, Nicoleta
1 / 2 shared
Roman, Ana-Maria
1 / 9 shared
Cernei, Eduard Radu
1 / 1 shared
Cimpoeșu, Ramona
1 / 2 shared
Geantă, Victor
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Munteanu, Corneliu
  • Lohan, Nicoleta Monica
  • Zegan, Georgeta
  • Cimpoeșu, Nicanor
  • Ioanid, Nicoleta
  • Roman, Ana-Maria
  • Cernei, Eduard Radu
  • Cimpoeșu, Ramona
  • Geantă, Victor
OrganizationsLocationPeople

article

In-Vitro Analysis of FeMn-Si Smart Biodegradable Alloy

  • Munteanu, Corneliu
  • Lohan, Nicoleta Monica
  • Zegan, Georgeta
  • Cimpoeșu, Nicanor
  • Ioanid, Nicoleta
  • Ioniță, Iulian
  • Roman, Ana-Maria
  • Cernei, Eduard Radu
  • Cimpoeșu, Ramona
  • Geantă, Victor
Abstract

<jats:p>Special materials are required in many applications to fulfill specific medical or industrial necessities. Biodegradable metallic materials present many attractive properties, especially mechanical ones correlated with good biocompatibility with vivant bodies. A biodegradable iron-based material was realized through electric arc-melting and induction furnace homogenization. The new chemical composition obtained presented a special property named SME (shape memory effect) based on the martensite transformation. Preliminary results about this special biodegradable material with a new chemical composition were realized for the chemical composition and structural and thermal characterization. Corrosion resistance was evaluated in Ringer’s solution through immersion tests for 1, 3, and 7 days, the solution pH was measured in time for 3 days with values for each minute, and electro-corrosion was measured using a potentiostat and a three electrode cell. The mass loss of the samples during immersion and electro-corrosion was evaluated and the surface condition was studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). SME was highlighted with differential scanning calorimetry (DSC). The results confirm the possibility of a memory effect of the materials in the wrought case and a generalized corrosion (Tafel and cyclic potentiometry and EIS) with the formation of iron oxides and a corrosion rate favorable for applications that require a longer implantation period.</jats:p>

Topics
  • surface
  • corrosion
  • scanning electron microscopy
  • chemical composition
  • differential scanning calorimetry
  • iron
  • electrochemical-induced impedance spectroscopy
  • Energy-dispersive X-ray spectroscopy
  • homogenization
  • biocompatibility
  • potentiometry