People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dhooge, Dagmar R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Surfactant-Free Peroxidase-Mediated Enzymatic Polymerization of a Biorenewable Butyrolactone Monomer via a Green Approach:Synthesis of Sustainable Biobased Latexescitations
- 2023Surfactant-Free Peroxidase-Mediated Enzymatic Polymerization of a Biorenewable Butyrolactone Monomer via a Green Approach: Synthesis of Sustainable Biobased Latexes
- 2023Multi-angle evaluation of kinetic Monte-Carlo simulations as a tool to evaluate the distributed monomer composition in gradient copolymer synthesiscitations
- 2023Bayesian tuned kinetic Monte Carlo modeling of polystyrene pyrolysis : unraveling the pathways to its monomer, dimers, and trimers formationcitations
- 2023Predicting encapsulant delamination in photovoltaic modules bridging photochemical reaction kinetics and fracture mechanicscitations
- 2023Molecular pathways for polymer degradation during conventional processing, additive manufacturing, and mechanical recyclingcitations
- 2022Setting the optimal laser power for sustainable powder bed fusion processing of elastomeric polyesters : a combined experimental and theoretical studycitations
- 2022Thermal and thermal-oxidative molecular degradation of polystyrene and acrylonitrile butadiene styrene during 3D printing starting from filaments and pelletscitations
- 2022Exploiting mono‐ and hybrid nanocomposite materials for fused filament fabrication with <scp>acrylonitrile butadiene styrene</scp> as polymer matrixcitations
- 2022Increasing the sustainability of the hybrid mold technique through combined insert polymeric material and additive manufacturing method designcitations
- 2022A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)scitations
- 2021A combined experimental and modeling study for pellet-fed extrusion-based additive manufacturing to evaluate the impact of the melting efficiencycitations
- 2021Lifting the quality of fused filament fabrication of polylactic acid based compositescitations
- 2021Influence of machine type and consecutive closed-loop recycling on macroscopic properties for fused filament fabrication of acrylonitrile-butadiene-styrene partscitations
- 2020The transferability and design of commercial printer settings in PLA/PBAT fused filament fabricationcitations
- 2020Immiscibility of chemically alike amorphous polymers : phase separation of poly(2-ethyl-2-oxazoline) and poly(2‑n‑propyl-2- oxazoline)citations
- 2020Connecting polymer synthesis and chemical recycling on a chain-by-chain basis : a unified matrix-based kinetic Monte Carlo strategycitations
- 2020Influence of different stabilization systems and multiple ultraviolet A (UVA) aging/recycling steps on physicochemical, mechanical, colorimetric, and thermal-oxidative properties of ABScitations
- 2020Progress in reaction mechanisms and reactor technologies for thermochemical recycling of poly(methyl methacrylate)citations
- 2019Composite Materials: Excellent nanofiber adhesion for hybrid polymer materials with high toughness based on matrix interdiffusion during chemical conversion (Adv. Funct. Mater. 8/2019)citations
- 2019A statistical analysis on the effect of antioxidants on the thermal-oxidative stability of commercial mass- and emulsion-polymerized ABScitations
- 2019Interdiffusing core-shell nanofiber interleaved composites for excellent Mode I and Mode II delamination resistancecitations
- 2019The relevance of multi‐injection and temperature profiles to design multi‐phase reactive processing of polyolefinscitations
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing
- 2019Improving mechanical properties for extrusion-based additive manufacturing of poly(lactic acid) by annealing and blending with poly(3-hydroxybutyrate)citations
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend development for extrusion-based additive manufacturing
- 2017How penultimate monomer unit effects and initiator choice influence ICAR ATRP of n-butyl acrylate and methyl methacrylatecitations
- 2015Model-based visualization and understanding of monomer sequence formation in the synthesis of gradient copoly(2-oxazoline)s on the basis of 2-methyl-2-oxazoline and 2-phenyl-2-oxazolinecitations
- 2015Model-based design of the polymer microstructure: bridging the gap between polymer chemistry and engineeringcitations
- 2014Fed-batch control and visualization of monomer sequences of individual ICAR ATRP gradient copolymer chainscitations
- 2012Linear gradient quality of ATRP copolymerscitations
- 2010Atom transfer radical polymerization of isobornyl acrylate: a kinetic modeling studycitations
- 2010Atom Transfer Radical Polymerization of Isobornyl Acrylate: A Kinetic Modeling Studycitations
Places of action
Organizations | Location | People |
---|
article
Setting the optimal laser power for sustainable powder bed fusion processing of elastomeric polyesters : a combined experimental and theoretical study
Abstract
Additive manufacturing (AM) of polymeric materials offers many benefits, from rapid prototyping to the production of end-use material parts. Powder bed fusion (PBF), more specifically selective laser sintering (SLS), is a very promising AM technology. However, up until now, most SLS research has been directed toward polyamide powders. In addition, only basic models have been put forward that are less directed to the identification of the most suited operating conditions in a sustainable production context. In the present combined experimental and theoretical study, the impacts of several SLS processing parameters (e.g., laser power, part bed temperature, and layer thickness) are investigated for a thermoplastic elastomer polyester by means of colorimetric, morphological, physical, and mechanical analysis of the printed parts. It is shown that an optimal SLS processing window exists in which the printed polyester material presents a higher density and better mechanical properties as well as a low yellowing index, specifically upon using a laser power of 17–20 W. It is further highlighted that the current models are not accurate enough at predicting the laser power at which thermal degradation occurs. Updated and more fundamental equations are therefore proposed, and guidelines are formulated to better assess the laser power for degradation and the maximal temperature achieved during sintering. This is performed by employing the reflection and absorbance of the laser light and taking into account the particle size distribution of the powder material.