People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mizera, Kamila
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022The Effect of Manufacture Process on Mechanical Properties and Burning Behavior of Epoxy-Based Hybrid Compositescitations
- 2021Composites of Poly(vinyl chloride) with Residual Hops after Supercritical Extraction in CO2citations
- 2021Moisture Resistance, Thermal Stability and Fire Behavior of Unsaturated Polyester Resin Modified with L-histidinium Dihydrogen Phosphate-Phosphoric Acidcitations
- 2019The influence of degree of fragmentation of Pinus sibirica on flammability, thermal and thermomechanical behavior of the epoxy-compositescitations
- 2018Thermal stability, fire behavior, and fumes emission of polyethylene nanocomposites with halogen-free fire retardantscitations
Places of action
Organizations | Location | People |
---|
article
The Effect of Manufacture Process on Mechanical Properties and Burning Behavior of Epoxy-Based Hybrid Composites
Abstract
<jats:p>The production of hybrid layered composites allows comprehensive modification of their properties and adaptation to the final expectations. Different methods, such as hand lay-up, vacuum bagging, and resin infusion were applied to manufacture the hybrid composites. In turn, fabrics used for manufacturing composites were made of glass (G), aramid (A), carbon (C), basalt (B), and flax (F) fibers. Flexural, puncture impact behavior, and cone calorimetry tests were applied to establish the effect of the manufacturing method and the fabrics layout on the mechanical and fire behavior of epoxy-based laminates. The lowest flammability and smoke emission were noted for composites made by vacuum bagging (approximately 40% lower values of total smoke release compared with composites made by the hand lay-up method). It was demonstrated that multi-layer hybrid composites made by vacuum bagging might enhance the fire safety levels and simultaneously maintain high mechanical properties designed for, e.g., the railway and automotive industries.</jats:p>